Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(5): 1215-1228.e25, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27839866

RESUMEN

The last steps in mRNA export and remodeling are performed by the Nup82 complex, a large conserved assembly at the cytoplasmic face of the nuclear pore complex (NPC). By integrating diverse structural data, we have determined the molecular architecture of the native Nup82 complex at subnanometer precision. The complex consists of two compositionally identical multiprotein subunits that adopt different configurations. The Nup82 complex fits into the NPC through the outer ring Nup84 complex. Our map shows that this entire 14-MDa Nup82-Nup84 complex assembly positions the cytoplasmic mRNA export factor docking sites and messenger ribonucleoprotein (mRNP) remodeling machinery right over the NPC's central channel rather than on distal cytoplasmic filaments, as previously supposed. We suggest that this configuration efficiently captures and remodels exporting mRNP particles immediately upon reaching the cytoplasmic side of the NPC.


Asunto(s)
Proteínas de Complejo Poro Nuclear/química , Poro Nuclear/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Levaduras/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Fúngicas , Proteínas de Complejo Poro Nuclear/ultraestructura , ARN Mensajero , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/ultraestructura
2.
Nature ; 609(7927): 605-610, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35768502

RESUMEN

Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants1-3. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space4-9. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline-proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas de Transporte de Membrana , Antiportadores/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Bicarbonatos/metabolismo , Ácidos y Sales Biliares/metabolismo , Sitios de Unión , Transporte Biológico , Herbicidas/metabolismo , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Ftalimidas/metabolismo , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/metabolismo , Prolina/metabolismo , Dominios Proteicos , Multimerización de Proteína , Protones , Sodio/metabolismo , Simportadores/metabolismo
3.
Trends Biochem Sci ; 48(11): 937-948, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37574372

RESUMEN

Auxins are pivotal plant hormones that regulate plant growth and transmembrane polar auxin transport (PAT) direct patterns of development. The PIN-FORMED (PIN) family of membrane transporters mediate auxin export from the plant cell and play crucial roles in PAT. Here we describe the recently solved structures of PIN transporters, PIN1, PIN3, and PIN8, and also their mechanisms of substrate recognition and transport of auxin. We compare structures of PINs in both inward- and outward-facing conformations, as well as PINs with different binding configurations for auxin. By this comparative analysis, a model emerges for an elevator transport mechanism. Central structural elements necessary for function are identified, and we show that these are shared with other distantly related protein families.

4.
Proc Natl Acad Sci U S A ; 121(15): e2315575121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568972

RESUMEN

The membrane protein Niemann-Pick type C1 (NPC1, named NCR1 in yeast) is central to sterol homeostasis in eukaryotes. Saccharomyces cerevisiae NCR1 is localized to the vacuolar membrane, where it is suggested to carry sterols across the protective glycocalyx and deposit them into the vacuolar membrane. However, documentation of a vacuolar glycocalyx in fungi is lacking, and the mechanism for sterol translocation has remained unclear. Here, we provide evidence supporting the presence of a glycocalyx in isolated S. cerevisiae vacuoles and report four cryo-EM structures of NCR1 in two distinct conformations, named tense and relaxed. These two conformations illustrate the movement of sterols through a tunnel formed by the luminal domains, thus bypassing the barrier presented by the glycocalyx. Based on these structures and on comparison with other members of the Resistance-Nodulation-Division (RND) superfamily, we propose a transport model that links changes in the luminal domains with a cycle of protonation and deprotonation within the transmembrane region of the protein. Our model suggests that NPC proteins work by a generalized RND mechanism where the proton motive force drives conformational changes in the transmembrane domains that are allosterically coupled to luminal/extracellular domains to promote sterol transport.


Asunto(s)
Saccharomyces cerevisiae , Esteroles , Esteroles/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Proteína Niemann-Pick C1/metabolismo , Glicoproteínas de Membrana/metabolismo
5.
Nature ; 555(7697): 475-482, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29539637

RESUMEN

Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.


Asunto(s)
Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/química , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas , Modelos Moleculares , Estabilidad Proteica , Transporte de Proteínas , Transporte de ARN
6.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34272288

RESUMEN

KdpFABC is an oligomeric K+ transport complex in prokaryotes that maintains ionic homeostasis under stress conditions. The complex comprises a channel-like subunit (KdpA) from the superfamily of K+ transporters and a pump-like subunit (KdpB) from the superfamily of P-type ATPases. Recent structural work has defined the architecture and generated contradictory hypotheses for the transport mechanism. Here, we use substrate analogs to stabilize four key intermediates in the reaction cycle and determine the corresponding structures by cryogenic electron microscopy. We find that KdpB undergoes conformational changes consistent with other representatives from the P-type superfamily, whereas KdpA, KdpC, and KdpF remain static. We observe a series of spherical densities that we assign as K+ or water and which define a pathway for K+ transport. This pathway runs through an intramembrane tunnel in KdpA and delivers ions to sites in the membrane domain of KdpB. Our structures suggest a mechanism where ATP hydrolysis is coupled to K+ transfer between alternative sites in KdpB, ultimately reaching a low-affinity site where a water-filled pathway allows release of K+ to the cytoplasm.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Adenosina Trifosfatasas/genética , Sitios de Unión , Proteínas de Transporte de Catión/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transporte Iónico , Proteínas de la Membrana/genética , Modelos Moleculares , Operón , Potasio/metabolismo
7.
Nature ; 546(7660): 681-685, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28636601

RESUMEN

Cellular potassium import systems play a fundamental role in osmoregulation, pH homeostasis and membrane potential in all domains of life. In bacteria, the kdp operon encodes a four-subunit potassium pump that maintains intracellular homeostasis, cell shape and turgor under conditions in which potassium is limiting. This membrane complex, called KdpFABC, has one channel-like subunit (KdpA) belonging to the superfamily of potassium transporters and another pump-like subunit (KdpB) belonging to the superfamily of P-type ATPases. Although there is considerable structural and functional information about members of both superfamilies, the mechanism by which uphill potassium transport through KdpA is coupled with ATP hydrolysis by KdpB remains poorly understood. Here we report the 2.9 Å X-ray structure of the complete Escherichia coli KdpFABC complex with a potassium ion within the selectivity filter of KdpA and a water molecule at a canonical cation site in the transmembrane domain of KdpB. The structure also reveals two structural elements that appear to mediate the coupling between these two subunits. Specifically, a protein-embedded tunnel runs between these potassium and water sites and a helix controlling the cytoplasmic gate of KdpA is linked to the phosphorylation domain of KdpB. On the basis of these observations, we propose a mechanism that repurposes protein channel architecture for active transport across biomembranes.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas de la Membrana/química , Potasio/metabolismo , Cristalografía por Rayos X , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Fosforilación
8.
Proc Natl Acad Sci U S A ; 115(12): 3042-3047, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507252

RESUMEN

YiiP is a dimeric antiporter from the cation diffusion facilitator family that uses the proton motive force to transport Zn2+ across bacterial membranes. Previous work defined the atomic structure of an outward-facing conformation, the location of several Zn2+ binding sites, and hydrophobic residues that appear to control access to the transport sites from the cytoplasm. A low-resolution cryo-EM structure revealed changes within the membrane domain that were associated with the alternating access mechanism for transport. In the current work, the resolution of this cryo-EM structure has been extended to 4.1 Å. Comparison with the X-ray structure defines the differences between inward-facing and outward-facing conformations at an atomic level. These differences include rocking and twisting of a four-helix bundle that harbors the Zn2+ transport site and controls its accessibility within each monomer. As previously noted, membrane domains are closely associated in the dimeric structure from cryo-EM but dramatically splayed apart in the X-ray structure. Cysteine crosslinking was used to constrain these membrane domains and to show that this large-scale splaying was not necessary for transport activity. Furthermore, dimer stability was not compromised by mutagenesis of elements in the cytoplasmic domain, suggesting that the extensive interface between membrane domains is a strong determinant of dimerization. As with other secondary transporters, this interface could provide a stable scaffold for movements of the four-helix bundle that confers alternating access of these ions to opposite sides of the membrane.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/fisiología , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Conformación Proteica , Dominios Proteicos
9.
Nature ; 507(7490): 118-23, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24487619

RESUMEN

The recognition events that mediate adaptive cellular immunity and regulate antibody responses depend on intercellular contacts between T cells and antigen-presenting cells (APCs). T-cell signalling is initiated at these contacts when surface-expressed T-cell receptors (TCRs) recognize peptide fragments (antigens) of pathogens bound to major histocompatibility complex molecules (pMHC) on APCs. This, along with engagement of adhesion receptors, leads to the formation of a specialized junction between T cells and APCs, known as the immunological synapse, which mediates efficient delivery of effector molecules and intercellular signals across the synaptic cleft. T-cell recognition of pMHC and the adhesion ligand intercellular adhesion molecule-1 (ICAM-1) on supported planar bilayers recapitulates the domain organization of the immunological synapse, which is characterized by central accumulation of TCRs, adjacent to a secretory domain, both surrounded by an adhesive ring. Although accumulation of TCRs at the immunological synapse centre correlates with T-cell function, this domain is itself largely devoid of TCR signalling activity, and is characterized by an unexplained immobilization of TCR-pMHC complexes relative to the highly dynamic immunological synapse periphery. Here we show that centrally accumulated TCRs are located on the surface of extracellular microvesicles that bud at the immunological synapse centre. Tumour susceptibility gene 101 (TSG101) sorts TCRs for inclusion in microvesicles, whereas vacuolar protein sorting 4 (VPS4) mediates scission of microvesicles from the T-cell plasma membrane. The human immunodeficiency virus polyprotein Gag co-opts this process for budding of virus-like particles. B cells bearing cognate pMHC receive TCRs from T cells and initiate intracellular signals in response to isolated synaptic microvesicles. We conclude that the immunological synapse orchestrates TCR sorting and release in extracellular microvesicles. These microvesicles deliver transcellular signals across antigen-dependent synapses by engaging cognate pMHC on APCs.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Polaridad Celular , Sinapsis Inmunológicas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Vesículas Secretoras/metabolismo , Animales , Células Presentadoras de Antígenos/citología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Femenino , VIH/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Sinapsis Inmunológicas/ultraestructura , Molécula 1 de Adhesión Intercelular/metabolismo , Activación de Linfocitos , Masculino , Ratones , Unión Proteica , Transporte de Proteínas , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/ultraestructura , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Liberación del Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
10.
Mol Membr Biol ; 35(1): 21-38, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31259644

RESUMEN

In bacteria, K+ is used to maintain cell volume and osmotic potential. Homeostasis normally involves a network of constitutively expressed transport systems, but in K+ deficient environments, the KdpFABC complex uses ATP to pump K+ into the cell. This complex appears to be a hybrid of two types of transporters, with KdpA descending from the superfamily of K+ transporters and KdpB belonging to the superfamily of P-type ATPases. Studies of enzymatic activity documented a catalytic cycle with hallmarks of classical P-type ATPases and studies of ion transport indicated that K+ import into the cytosol occurred in the second half of this cycle in conjunction with hydrolysis of an aspartyl phosphate intermediate. Atomic structures of the KdpFABC complex from X-ray crystallography and cryo-EM have recently revealed conformations before and after formation of this aspartyl phosphate that appear to contradict the functional studies. Specifically, structural comparisons with the archetypal P-type ATPase, SERCA, suggest that K+ transport occurs in the first half of the cycle, accompanying formation of the aspartyl phosphate. Further controversy has arisen regarding the path by which K+ crosses the membrane. The X-ray structure supports the conventional view that KdpA provides the conduit, whereas cryo-EM structures suggest that K+ moves from KdpA through a long, intramembrane tunnel to reach canonical ion binding sites in KdpB from which they are released to the cytosol. This review discusses evidence supporting these contradictory models and identifies key experiments needed to resolve discrepancies and produce a unified model for this fascinating mechanistic hybrid.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Transporte de Catión , Proteínas de Escherichia coli , Escherichia coli/enzimología , Complejos Multiproteicos/química , Potasio , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transporte Iónico/fisiología , Complejos Multiproteicos/metabolismo , Potasio/química , Potasio/metabolismo
11.
J Biol Chem ; 292(40): 16594-16604, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28821608

RESUMEN

The function of protein products generated from intramembraneous cleavage by the γ-secretase complex is not well defined. The γ-secretase complex is responsible for the cleavage of several transmembrane proteins, most notably the amyloid precursor protein that results in Aß, a transmembrane (TM) peptide. Another protein that undergoes very similar γ-secretase cleavage is the p75 neurotrophin receptor. However, the fate of the cleaved p75 TM domain is unknown. p75 neurotrophin receptor is highly expressed during early neuronal development and regulates survival and process formation of neurons. Here, we report that the p75 TM can stimulate the phosphorylation of TrkB (tyrosine kinase receptor B). In vitro phosphorylation experiments indicated that a peptide representing p75 TM increases TrkB phosphorylation in a dose- and time-dependent manner. Moreover, mutagenesis analyses revealed that a valine residue at position 264 in the rat p75 neurotrophin receptor is necessary for the ability of p75 TM to induce TrkB phosphorylation. Because this residue is just before the γ-secretase cleavage site, we then investigated whether the p75(αγ) peptide, which is a product of both α- and γ-cleavage events, could also induce TrkB phosphorylation. Experiments using TM domains from other receptors, EGFR and FGFR1, failed to stimulate TrkB phosphorylation. Co-immunoprecipitation and biochemical fractionation data suggested that p75 TM stimulates TrkB phosphorylation at the cell membrane. Altogether, our results suggest that TrkB activation by p75(αγ) peptide may be enhanced in situations where the levels of the p75 receptor are increased, such as during brain injury, Alzheimer's disease, and epilepsy.


Asunto(s)
Membrana Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptor trkB/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Sustitución de Aminoácidos , Animales , Lesiones Encefálicas/genética , Lesiones Encefálicas/metabolismo , Membrana Celular/genética , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Mutagénesis , Mutación Missense , Fosforilación , Dominios Proteicos , Ratas , Receptor de Factor de Crecimiento Nervioso/genética , Receptor trkB/genética , Células Sf9 , Spodoptera
12.
RNA ; 22(9): 1467-75, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27402899

RESUMEN

As a result of its importance in key RNA metabolic processes, the ribonucleolytic RNA exosome complex has been the focus of intense study for almost two decades. Research on exosome subunit assembly, cofactor and substrate interaction, enzymatic catalysis and structure have largely been conducted using complexes produced in the yeast Saccharomyces cerevisiae or in bacteria. Here, we examine different populations of endogenous exosomes from human embryonic kidney (HEK) 293 cells and test their enzymatic activity and structural integrity. We describe methods to prepare EXOSC10-containing, enzymatically active endogenous human exosomes at suitable yield and purity for in vitro biochemistry and negative stain transmission electron microscopy. This opens the door for assays designed to test the in vitro effects of putative cofactors on human exosome activity and will enable structural studies of preparations from endogenous sources.


Asunto(s)
Exosomas/química , Exosomas/metabolismo , Células HEK293 , Humanos , ARN Mensajero/química , ARN Mensajero/metabolismo
13.
PLoS Comput Biol ; 13(10): e1005790, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28991926

RESUMEN

We simulate deformable red blood cells in the microcirculation using the immersed boundary method with a cytoskeletal model that incorporates structural details revealed by tomographic images. The elasticity of red blood cells is known to be supplied by both their lipid bilayer membranes, which resist bending and local changes in area, and their cytoskeletons, which resist in-plane shear. The cytoskeleton consists of spectrin tetramers that are tethered to the lipid bilayer by ankyrin and by actin-based junctional complexes. We model the cytoskeleton as a random geometric graph, with nodes corresponding to junctional complexes and with edges corresponding to spectrin tetramers such that the edge lengths are given by the end-to-end distances between nodes. The statistical properties of this graph are based on distributions gathered from three-dimensional tomographic images of the cytoskeleton by a segmentation algorithm. We show that the elastic response of our model cytoskeleton, in which the spectrin polymers are treated as entropic springs, is in good agreement with the experimentally measured shear modulus. By simulating red blood cells in flow with the immersed boundary method, we compare this discrete cytoskeletal model to an existing continuum model and predict the extent to which dynamic spectrin network connectivity can protect against failure in the case of a red cell subjected to an applied strain. The methods presented here could form the basis of disease- and patient-specific computational studies of hereditary diseases affecting the red cell cytoskeleton.


Asunto(s)
Citoesqueleto/química , Eritrocitos/citología , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Biológicos , Espectrina/química , Algoritmos , Elasticidad , Deformación Eritrocítica , Humanos
14.
J Struct Biol ; 195(2): 167-178, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27255388

RESUMEN

Helical reconstruction represents a convenient and powerful approach for structure determination of macromolecules that assemble into helical arrays. In the case of membrane proteins, formation of tubular crystals with helical symmetry represents an attractive alternative, especially when their small size precludes the use of single-particle analysis. An essential first step for helical reconstruction is to characterize the helical symmetry. This process is often daunting, due to the complexity of helical diffraction and to the low signal-to-noise ratio in images of individual assemblies. Furthermore, the large diameters of the tubular crystals produced by membrane proteins exacerbates the innate ambiguities that, if not resolved, will produce incorrect structures. In this report, we describe a set of tools that can be used to eliminate ambiguities and to validate the choice of symmetry. The first approach increases the signal-to-noise ratio along layer lines by incoherently summing data from multiple helical assemblies, thus producing several candidate indexing schemes. The second approach compares the layer lines from images with those from synthetic models built with the various candidate schemes. The third approach uses unit cell dimensions measured from collapsed tubes to distinguish between these candidate schemes. These approaches are illustrated with tubular crystals from a boron transporter from yeast, Bor1p, and a ß-barrel channel from the outer membrane of E. coli, OmpF.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/química , Porinas/química , Conformación Proteica en Hélice alfa , Proteínas de Saccharomyces cerevisiae/química , Microscopía por Crioelectrón , Escherichia coli , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Proteínas de la Membrana/ultraestructura , Proteínas de Transporte de Membrana/ultraestructura , Modelos Moleculares , Porinas/ultraestructura , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
15.
Proc Natl Acad Sci U S A ; 110(6): 2140-5, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23341604

RESUMEN

YiiP is a dimeric Zn(2+)/H(+) antiporter from Escherichia coli belonging to the cation diffusion facilitator family. We used cryoelectron microscopy to determine a 13-Å resolution structure of a YiiP homolog from Shewanella oneidensis within a lipid bilayer in the absence of Zn(2+). Starting from the X-ray structure in the presence of Zn(2+), we used molecular dynamics flexible fitting to build a model consistent with our map. Comparison of the structures suggests a conformational change that involves pivoting of a transmembrane, four-helix bundle (M1, M2, M4, and M5) relative to the M3-M6 helix pair. Although accessibility of transport sites in the X-ray model indicates that it represents an outward-facing state, our model is consistent with an inward-facing state, suggesting that the conformational change is relevant to the alternating access mechanism for transport. Molecular dynamics simulation of YiiP in a lipid environment was used to address the feasibility of this conformational change. Association of the C-terminal domains is the same in both states, and we speculate that this association is responsible for stabilizing the dimer that, in turn, may coordinate the rearrangement of the transmembrane helices.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transporte de Catión/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Homología de Secuencia de Aminoácido , Shewanella/genética , Shewanella/metabolismo , Zinc/metabolismo
16.
Blood ; 122(26): 4165-71, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24136164

RESUMEN

Integrin αIIbß3 plays a central role in hemostasis and thrombosis. We provide the first 3-dimensional reconstruction of intact purified αIIbß3 in a nanodisc lipid bilayer. Unlike previous models, it shows that the ligand-binding head domain is on top, pointing away from the membrane. Moreover, unlike the crystal structure of the recombinant ectodomain, the lower legs are not parallel, straight, and adjacent. Rather, the αIIb lower leg is bent between the calf-1 and calf-2 domains and the ß3 Integrin-Epidermal Growth Factor (I-EGF) 2 to 4 domains are freely coiled rather than in a cleft between the ß3 headpiece and the αIIb lower leg. Our data indicate an important role for the region that links the distal calf-2 and ß-tail domains to their respective transmembrane (TM) domains in transmitting the conformational changes in the TM domains associated with inside-out activation.


Asunto(s)
Imagenología Tridimensional , Modelos Químicos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Cristalografía por Rayos X , Humanos , Ligandos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Microscopía Electrónica , Nanoestructuras , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad
17.
Curr Opin Cell Biol ; 19(5): 565-71, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17945476

RESUMEN

Desmosomes are cell-cell junctions responsible for maintaining the structural integrity of tissues by resisting shear forces. Defects result in diseases of mechanically challenged tissues such as skin and heart. The architectural design represents the key to understanding the strength and durability inherent to desmosomes. A number of different proteins contribute to this architecture, and X-ray crystallography has made considerable progress in defining the atomic structure of various isolated domains. Electron tomography has been used to determine the three-dimensional structure of intact desmosomes in situ. By combining information from X-ray crystallography, cell and molecular biology and electron tomography, it should ultimately be possible to deduce the specific protein interactions that define the mechanical properties of this important adhesive junction.


Asunto(s)
Cadherinas/metabolismo , Desmosomas/ultraestructura , Secuencia de Aminoácidos , Animales , Cadherinas/química , Desmoplaquinas/metabolismo , Desmosomas/química , Desmosomas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Placofilinas/metabolismo , Conformación Proteica , Alineación de Secuencia , gamma Catenina/metabolismo
18.
Arch Biochem Biophys ; 546: 33-40, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24503478

RESUMEN

Cyclooxygenases (COX-1 and COX-2) oxygenate arachidonic acid (AA) to generate prostaglandins. The enzymes associate with one leaflet of the membrane bilayer. We utilized nanodisc technology to investigate the function of human (hu) COX-2 and murine (mu) COX-2 in a lipid bilayer environment. huCOX-2 and muCOX-2 were incorporated into nanodiscs composed of POPC, POPS, DOPC, or DOPS phospholipids. Size-exclusion chromatography and negative stain electron microscopy confirm that a single COX-2 homodimer is incorporated into the nanodisc scaffold. Nanodisc-reconstituted COX-2 exhibited similar kinetic profiles for the oxygenation of AA, eicosapentaenoic acid, and 1-arachidonoyl glycerol compared to those derived using detergent solubilized enzyme. Moreover, changing the phospholipid composition of the nanodisc did not alter the ability of COX-2 to oxygenate AA or to be inhibited by various nonselective NSAIDs or celecoxib. The cyclooxygenase activity of nanodisc-reconstituted COX-2 was reduced by aspirin acetylation and potentiated by the nonsubstrate fatty acid palmitic acid to the same extent as detergent solubilized enzyme, independent of phospholipid composition. The stabilization and maintenance of activity afforded by the incorporation of the enzyme into nanodiscs generates a native-like lipid bilayer environment to pursue studies of COX utilizing solution-based techniques that are otherwise not tractable in the presence of detergents.


Asunto(s)
Biocatálisis , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Membrana Dobles de Lípidos/metabolismo , Nanotecnología/métodos , Animales , Ciclooxigenasa 2/química , Activación Enzimática/efectos de los fármacos , Humanos , Membrana Dobles de Lípidos/química , Ratones , Modelos Moleculares , Ácido Palmítico/farmacología , Fosfolípidos/metabolismo , Conformación Proteica
19.
Nat Chem Biol ; 8(10): 862-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22941046

RESUMEN

Cardiolipin is a mitochondrial phospholipid with a characteristic acyl chain composition that depends on the function of tafazzin, a phospholipid-lysophospholipid transacylase, although the enzyme itself lacks acyl specificity. We incubated isolated tafazzin with various mixtures of phospholipids and lysophospholipids, characterized the lipid phase by (31)P-NMR and measured newly formed molecular species by MS. Substantial transacylation was observed only in nonbilayer lipid aggregates, and the substrate specificity was highly sensitive to the lipid phase. In particular, tetralinoleoyl-cardiolipin, a prototype molecular species, formed only under conditions that favor the inverted hexagonal phase. In isolated mitochondria, <1% of lipids participated in transacylations, suggesting that the action of tafazzin was limited to privileged lipid domains. We propose that tafazzin reacts with non-bilayer-type lipid domains that occur in curved or hemifused membrane zones and that acyl specificity is driven by the packing properties of these domains.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Proteínas de Drosophila/metabolismo , Metabolismo de los Lípidos , Acilación , Animales , Drosophila , Membrana Dobles de Lípidos , Micelas , Resonancia Magnética Nuclear Biomolecular , Especificidad por Sustrato
20.
Biophys Rep (N Y) ; 4(3): 100169, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950825

RESUMEN

In vitro assays of ion transport are an essential tool for understanding molecular mechanisms associated with ATP-dependent pumps. Because ion transport is generally electrogenic, principles of electrophysiology are applicable, but conventional tools like patch-clamp are ineffective due to relatively low turnover rates of the pumps. Instead, assays have been developed to measure either voltage or current generated by transport activity of a population of molecules either in cell-derived membrane fragments or after reconstituting purified protein into proteoliposomes. In order to understand the nuances of these assays and to characterize effects of various operational parameters, we have developed a numerical model to simulate data produced by two relevant assays: fluorescence from voltage-sensitive dyes and current recorded by capacitive coupling on solid supported membranes. Parameters of the model, which has been implemented in Python, are described along with underlying principles of the computational algorithm. Experimental data from KdpFABC, a K+ pump associated with P-type ATPases, are presented, and model parameters have been adjusted to mimic these data. In addition, effects of key parameters such as nonselective leak conductance and turnover rate are demonstrated. Finally, simulated data are used to illustrate the effects of capacitive coupling on measured current and to compare alternative methods for quantification of raw data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA