RESUMEN
Viruses often use ion channel proteins to initialise host infections. Defects in ion channel proteins are also linked to several metabolic disorders in humans. In that instance, modulation of ion channel activities becomes central to development of antiviral therapies and drug design. Kesv, a potassium-selective ion channel protein expressed by Ectocarpus siliculosus virus (EsV), possesses remarkable properties which can help to characterise the molecular basis of the functional processes relevant to virus biology and human physiology. The small structural features of this ion channel could serve as a fundamental primer to study more complex ion channels from humans. Therefore, in spite of their evolutionary distance, the potential link between viral and human ion channel proteins could provide opportunities for therapeutic and biotechnological applications.
Asunto(s)
Proteínas Virales , Humanos , Canales Iónicos/química , Canales Iónicos/genética , Canales Iónicos/metabolismo , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/genéticaRESUMEN
The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.
Asunto(s)
Canal de Potasio KCNQ1 , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Sitios de Unión , Mutación , Membrana Celular/metabolismoRESUMEN
This work aimed at the development of a stable albumin-perfluorocarbon (o/w) emulsion as an artificial oxygen carrier suitable for clinical application. So far, albumin-perfluorocarbon-(o/w) emulsions have been successfully applied in preclinical trials. Cross-linking a variety of different physical and chemical methods for the characterization of an albumin-perfluorocarbon (PFC)-(o/w) emulsion was necessary to gain a deep understanding of its specific emulsification processes during high-pressure homogenization. High-pressure homogenization is simple but incorporates complex physical reactions, with many factors influencing the formation of PFC droplets and their coating. This work describes and interprets the impact of albumin concentration, homogenization pressure, and repeated microfluidizer passages on PFC-droplet formation; its influence on storage stability; and the overcoming of obstacles in preparing stable nanoemulsions. The applied methods comprise dynamic light scattering, static light scattering, cryo- and non-cryo-scanning and transmission electron microscopies, nuclear magnetic resonance spectroscopy, light microscopy, amperometric oxygen measurements, and biochemical methods. The use of this wide range of methods provided a sufficiently comprehensive picture of this polydisperse emulsion. Optimization of PFC-droplet formation by means of temperature and pressure gradients results in an emulsion with improved storage stability (tested up to 5 months) that possibly qualifies for clinical applications. Adaptations in the manufacturing process strikingly changed the physical properties of the emulsion but did not affect its oxygen capacity.
Asunto(s)
Fluorocarburos , Albúminas , Emulsiones/química , Fluorocarburos/química , Oxígeno , Tamaño de la PartículaRESUMEN
High Mobility Group Protein A1a (HMGA1a) is a highly abundant nuclear protein, which plays a crucial role during embryogenesis, cell differentiation, and neoplasia. Here, we present the first ever NMR-based structural ensemble of full length HMGA1a. Our results show that the protein is not completely random coil but adopts a compact structure consisting of transient long-range contacts, which is regulated by post-translational phosphorylation. The CK2-, cdc2- and cdc2/CK2-phosphorylated forms of HMGA1a each exhibit a different binding affinity towards the PRD2 element of the NFκB promoter. Our study identifies connected regions between phosphorylation sites in the wildtype ensemble that change considerably upon phosphorylation, indicating that these posttranslational modifications sites are part of an electrostatic contact network that alters the structural ensemble by shifting the conformational equilibrium. Moreover, ITC data reveal that the CK2-phosphorylated HMGA1a exhibits a different DNA promoter binding affinity for the PRD2 element. Furthermore, we present the first structural model for AT-hook 1 of HMGA1a that can adopt a transient α-helical structure, which might serve as an additional regulatory mechanism in HMAG1a. Our findings will help to develop new therapeutic strategies against HMGA1a-associated cancers by taking posttranslational modifications into consideration.
Asunto(s)
ADN/metabolismo , Proteína HMGA1a/química , Proteína HMGA1a/metabolismo , Proteínas Intrínsecamente Desordenadas , FN-kappa B/genética , Pliegue de Proteína , Proteína Quinasa CDC2/metabolismo , Quinasa de la Caseína II/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , FN-kappa B/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Procesamiento Proteico-Postraduccional , Estructura Secundaria de ProteínaRESUMEN
A novel series of 2-(aryldiazenyl)-3-methyl-1H-benzo[g]indole derivatives (3a-f) were prepared through the cyclization of the corresponding arylamidrazones, employing polyphosphoric acid (PPA) as a cyclizing agent. All of the compounds (3a-f) were characterized using 1H NMR, 13C NMR, MS, elemental analysis, and melting point techniques. The synthesized compounds were evaluated for cytotoxic activity against diverse human cancer cell lines by the National Cancer Institute. While all of the screened compounds were found to be cytotoxic at a 10 µM concentration, two of them (2c) and (3c) were subjected to five dose screens and showed a significant cytotoxicity and selectivity.
Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Indoles/síntesis química , Indoles/farmacología , Células A549 , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Células HL-60 , Humanos , Células K562 , Células MCF-7 , Células PC-3 , Relación Estructura-ActividadRESUMEN
Even though halogen bonding-the noncovalent interaction between electrophilic halogen substituents and Lewis bases-has now been established in molecular recognition and catalysis, its use in enantioselective processes is still very rarely explored. Herein, we present the synthesis of chiral bidentate halogen-bond donors based on two iodoimidazolium units with rigidly attached chiral sidearms. With these Lewis acids, chiral recognition of a racemic diamine is achieved in NMR studies. DFT calculations support a 1:1 interaction of the halogen-bond donor with both enantiomers and indicate that the chiral recognition is based on a different spatial orientation of the Lewis bases in the halogen-bonded complexes. In addition, moderate enantioselectivity is achieved in a Mukaiyama aldol reaction with a preorganized variant of the chiral halogen-bond donor. This represents the first case in which asymmetric induction was realized with a pure halogen-bond donor lacking any additional active functional groups.
RESUMEN
Solvent and temperature can affect the structural properties of cyclic peptides by controlling their flexibility. Here, we investigate two cyclic peptides, featuring beta turns. Using temperature-dependent NMR and FT-IR, we observed a pronounced temperature effect on the conformation of the cyclic peptide D-1 in CHCl3 but a much smaller effect in CH3 CN. Almost no effect was observed for its diastereomer L-1 within a similar temperature range and using the same solvents. With the aid of Replica Exchange Molecular Dynamics simulations and Quantum Mechanics/Molecular Mechanics calculations, we were able to explain this behavior based on the increased flexibility of D-1 (in CHCl3 ) in terms of intramolecular hydrogen bonding. The largest temperature dependence is observed for D-1 in CHCl3 , while the temperature effect is less pronounced for L-1 in CHCl3 and for both peptides in CH3 CN. This work provides new insights into the role of the environment and temperature on the conformations of cyclic peptides.
Asunto(s)
Acetonitrilos/química , Cloroformo/química , Péptidos Cíclicos/química , Solventes/química , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Docilidad , Conformación Proteica , Teoría Cuántica , Espectroscopía Infrarroja por Transformada de Fourier , TemperaturaRESUMEN
Mitochondria-mediated apoptosis (programmed cell death) involves a sophisticated signaling and regulatory network that is regulated by the Bcl-2 protein family. Members of this family have either pro- or anti-apoptotic functions. An important pro-apoptotic member of this family is the cytosolic Bax. This protein is crucial for the onset of apoptosis by perforating the mitochondrial outer membrane (MOM). This process can be seen as point of no return, since disintegration of the MOM leads to the release of apotogenic factors such as cytochrome c into the cytosol triggering the activation of caspases and subsequent apoptotic steps. Bax is able to interact with the MOM with both its termini, making it inherently difficult to express in E. coli. In this study, we present a novel approach to express and purify full-length Bax with significantly increased yields, when compared to the commonly applied strategy. Using a double fusion approach with an N-terminal GST-tag and a C-terminal Intein-CBD-tag, we were able to render both Bax termini inactive and prevent disruptive interactions from occurring during gene expression. By deploying an Intein-CBD-tag at the C-terminus we were further able to avoid the introduction of any artificial residues, hence ensuring the native like activity of the membrane-penetrating C-terminus of Bax. Further, by engineering a His6-tag to the C-terminus of the CBD-tag we greatly improved the robustness of the purification procedure. We report yields for pure, full-length Bax protein that are increased by an order of magnitude, when compared to commonly used Bax expression protocols.
Asunto(s)
Expresión Génica , Proteínas Recombinantes de Fusión , Proteína X Asociada a bcl-2 , Cristalografía por Rayos X , Humanos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteína X Asociada a bcl-2/biosíntesis , Proteína X Asociada a bcl-2/química , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/aislamiento & purificaciónRESUMEN
Fibronectin is a large multidomain protein of the extracellular matrix that harbors two heparin binding sites, Hep-I and Hep-II, which support the heparin-dependent adhesion of melanoma and neuroblastoma cells [Barkalow, F. J. B., and Schwarzbauer, J. E. (1991) J. Biol. Chem. 266, 7812-7818; McCarthy, J. B., et al. (1988) Biochemistry 27, 1380-1388; Drake, S. L., et al. (1993) J. Biol. Chem. 268, 15859-15867]. The stronger heparin/HS binding site on fibronectin, Hep-II, spans fibronectin type III domains 12-14. Previous site-directed mutagenesis, nuclear magnetic resonance (NMR) chemical shift perturbation, and crystallographic structural studies all agree that the main heparin binding site is located on the surface of fibronectin type III domain 13 [Ingham, K. C., et al. (1993) Biochemistry 32, 12548-12553; Sharma, A., et al. (1999) EMBO J. 18, 1468-1479; Sachchidanand, L. O., et al. (2002) J. Biol. Chem. 277, 50629-50635]. However, the "synergy site" for heparin binding located on fibronectin type III domain 14 remained elusive because the actual binding sites could not be identified. Using NMR spectroscopy and isothermal titration calorimetry, we show here that heparin is able to bind to a cationic 'cradle' of fibronectin type III domain 14 formed by the PRARI sequence, which is involved in the integrin α4ß1 interaction [Mould, A. P., and Humphries, M. J. (1991) EMBO J. 10, 4089-4095], and to the flexible loop comprising residues KNNQKSE between the last two ß-strands, D and E, of FN14. Our data reveal that the individual FN14 domain binds to the sulfated sugars Dp8 and Reviparin with affinities similar to those of the individual domain FN13 [Breddin, H. K. (2002) Expert Opin. Pharmacother. 3, 173-182]. It is noteworthy that by introduction of the last ß-strand of FN13 and the linker region between FN type III domains 13 and 14, the perturbation of NMR chemical shifts by heparin is significantly reduced, especially at the PRARI site. This indicates that the Hep-II binding site of fibronectin is mainly located on FN13 and the synergistic binding site on FN14 involves only the KNNQKSE sequence.
Asunto(s)
Dominio de Fibronectina del Tipo III , Fibronectinas/química , Heparina/química , Sitios de Unión , Fibronectinas/metabolismo , Heparina/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Unión Proteica , Estructura Secundaria de ProteínaRESUMEN
The protein family of small GTPases controls cellular processes by acting as a binary switch between an active and an inactive state. The most prominent family members are H-Ras, N-Ras, and K-Ras isoforms, which are highly related and frequently mutated in cancer. Bisphenols are widespread in modern life because of their industrial application as plasticisers. Bisphenol A (BPA) is the best-known member and has gained significant scientific as well as public attention as an endocrine disrupting chemical, a fact that eventually led to its replacement. However, compounds used to replace BPA still contain the molecular scaffold of bisphenols. BPA, BPAF, BPB, BPE, BPF, and an amine-substituted BPAF-derivate all interact with all GDP-bound Ras-Isoforms through binding to a common site on these proteins. NMR-, SOScat-, and GDI- assay-based data revealed a new bisphenol-induced, allosterically activated GDP-bound Ras conformation that define these plasticisers as Ras allosteric agonists.
Asunto(s)
Sitio Alostérico , Compuestos de Bencidrilo/química , Disruptores Endocrinos/química , Fenoles/química , Proteínas ras/química , Regulación Alostérica , Compuestos de Bencidrilo/farmacología , Disruptores Endocrinos/farmacología , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Células HeLa , Humanos , Fenoles/farmacología , Unión Proteica , Proteínas ras/agonistas , Proteínas ras/metabolismoRESUMEN
PetP is a peripheral subunit of the cytochrome b(6)f complex (b(6)f) present in both, cyanobacteria and red algae. It is bound to the cytoplasmic surface of this membrane protein complex where it greatly affects the efficiency of the linear photosynthetic electron flow although it is not directly involved in the electron transfer reactions. Despite the crystal structures of the b(6)f core complex, structural information for the transient regulatory b(6)f subunits is still missing. Here we present the first structure of PetP at atomic resolution as determined by solution NMR. The protein adopts an SH3 fold, which is a common protein motif in eukaryotes but comparatively rare in prokaryotes. The structure of PetP enabled the identification of the potential interaction site for b(6)f binding by conservation mapping. The interaction surface is mainly formed by two large loop regions and one short 310 helix which also exhibit an increased flexibility as indicated by heteronuclear steady-state {(1)H}-(15)N NOE and random coil index parameters. The properties of this potential b(6)f binding site greatly differ from the canonical peptide binding site which is highly conserved in eukaryotic SH3 domains. Interestingly, three other proteins of the photosynthetic electron transport chain share this SH3 fold with PetP: NdhS of the photosynthetic NADH dehydrogenase-like complex (NDH-1), PsaE of the photosystem 1 and subunit α of the ferredoxin-thioredoxin reductase have, similar to PetP, a great impact on the photosynthetic electron transport. Finally, a model is presented to illustrate how SH3 domains modulate the photosynthetic electron transport processes in cyanobacteria.
Asunto(s)
Proteínas Bacterianas/química , Complejo de Citocromo b6f/química , Soluciones/química , Dominios Homologos src , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Cianobacterias/genética , Cianobacterias/metabolismo , Complejo de Citocromo b6f/genética , Complejo de Citocromo b6f/metabolismo , Transporte de Electrón , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Datos de Secuencia Molecular , Fotosíntesis , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de ProteínaRESUMEN
The small GTPase Rheb was originally detected as an immediate early response protein whose expression was induced by NMDA-dependent synaptic activity in the brain. Rheb's activity is highly regulated by its GTPase activating protein (GAP), the tuberous sclerosis complex protein, which stimulates the conversion from the active, GTP-loaded into the inactive, GDP-loaded conformation. Rheb has been established as an evolutionarily conserved molecular switch protein regulating cellular growth, cell volume, cell cycle, autophagy, and amino acid uptake. The subcellular localization of Rheb and its interacting proteins critically regulate its activity and function. In stem cells, constitutive activation of Rheb enhances differentiation at the expense of self-renewal partially explaining the adverse effects of deregulated Rheb in the mammalian brain. In the context of various cellular stress conditions such as oxidative stress, ER-stress, death factor signaling, and cellular aging, Rheb activation surprisingly enhances rather than prevents cellular degeneration. This review addresses cell type- and cell state-specific function(s) of Rheb and mainly focuses on neurons and their surrounding glial cells. Mechanisms will be discussed in the context of therapy that interferes with Rheb's activity using the antibiotic rapamycin or low molecular weight compounds.
Asunto(s)
Proteínas de Unión al GTP Monoméricas/metabolismo , Neuronas/citología , Animales , Apoptosis , Proliferación Celular , Humanos , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/metabolismo , Transporte de ProteínasRESUMEN
Ras GTPases are key players in cellular signalling because they act as binary switches. These states manifest through toggling between an active (GTP-loaded) and an inactive (GDP-loaded) form. The hydrolysis and replenishing of GTP is controlled by two additional protein classes: GAP (GTPase-activating)- and GEF (Guanine nucleotide exchange factors)-proteins. The complex interplay of the proteins is known as the GTPase-cycle. Several point mutations of the Ras protein deregulate this cycle. Mutations in Ras are associated with up to one-third of human cancers. The three isoforms of Ras (H, N, K) exhibit high sequence similarity and mainly differ in a region called HVR (hypervariable region). The HVR governs the differential action and cellular distribution of the three isoforms. Rheb is a Ras-like GTPase that is conserved from yeast to mammals. Rheb is mainly involved in activation of cell growth through stimulation of mTORC1 activity. In this review, we summarise multidimensional NMR studies on Rheb and Ras carried out to characterise their structure-function relationship and explain how the activity of these small GTPases can be modulated by low molecular weight compounds. These might help to design GTPase-selective antagonists for treatment of cancer and brain disease.
Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Proteínas ras/química , Proteínas ras/metabolismo , Animales , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Bibliotecas de Moléculas Pequeñas/farmacologíaRESUMEN
The cyanobacterial multi-subunit membrane protein complex NDH-1 is both structurally and functionally related to Complex I of eubacteria and mitochondria. In addition to functions in respiration and cyclic electron transfer around photosystem I (PSI), the cyanobacterial NDH-1 complex is involved in a unique mechanism for inorganic carbon concentration. Although the crystal structures of the similar respiratory Complex I from Thermus thermophilus and Escherichia coli are known, atomic structural information is not available for the cyanobacterial NDH-1 complex yet. In particular, the structures of those subunits that are not homologous to Complex I will help to understand their distinct functions. The 15.7kDa protein CupS is a small soluble subunit of the complex variant NDH-1MS, which is thought to play a role in CO2 conversion. Here, we present the NMR structure of CupS from Thermosynechococcus elongatus, which is the very first structure of a specific cyanobacterial NDH-1 complex subunit. CupS shares a structural similarity with members of the Fasciclin protein superfamily. The structural comparison to Fasciclin type proteins based on known NMR structures and protein sequences of human TGFBIp, MPB70 from Mycobacterium bovis, and Fdp from Rhodobacter sphaeroides, together with a virtual docking model of CupS and NdhF3, provide first insight into the specific binding of CupS to the NDH-1MS complex at atomic resolution.
RESUMEN
Herein, the selective enforcement of one particular receptor-ligand interaction between specific domains of the µ-selective opioid peptide dermorphin and the µ opioid receptor is presented. For this, a blocking group scan is described which exploits the steric demand of a bis(quinolinylmethyl)amine rhenium(I) tricarbonyl complex conjugated to a number of different, strategically chosen positions of dermorphin. The prepared peptide conjugates lead to the discovery of two different binding modes: An expected N-terminal binding mode corresponds to the established view of opioid peptide binding, whereas an unexpected C-terminal binding mode is newly discovered. Surprisingly, both binding modes provide high affinity and agonistic activity at the µ opioid receptor in vitro. Furthermore, the unprecedented C-terminal binding mode shows potent dose-dependent antinociception in vivo. Finally, in silico docking studies support receptor activation by both dermorphin binding modes and suggest a biological relevance for dermorphin itself. Relevant ligand-protein interactions are similar for both binding modes, which is in line with previous protein mutation studies.
Asunto(s)
Analgésicos Opioides/metabolismo , Complejos de Coordinación/metabolismo , Péptidos Opioides/metabolismo , Receptores Opioides mu/metabolismo , Renio/química , Analgésicos Opioides/química , Analgésicos Opioides/farmacología , Sitios de Unión , Unión Competitiva , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Células HEK293 , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Péptidos Opioides/química , Péptidos Opioides/farmacología , Unión Proteica , Ensayo de Unión Radioligante , Relación Estructura-ActividadRESUMEN
To design new compounds suitable as starting points for anticancer drug development, we have synthesized a novel series of benzoxazoles with pharmaceutically advantageous piperazine and fluorine moieties attached to them. The newly synthesized benzoxazoles and their corresponding precursors were evaluated for cytotoxicity on human A-549 lung carcinoma cells and non-cancer HepaRG hepatocyes. Some of these new benzoxazoles show potential anticancer activity, while two of the intermediates show lung cancer selective properties at low concentrations where healthy cells are unaffected, indicating a selectivity window for anticancer compounds.
RESUMEN
Structure-guided protein engineering achieved a variant of the unique racemase AMDase G74C, with 40-fold increased activity in the racemisation of several arylaliphatic carboxylic acids. Substrate binding during catalysis was investigated by saturation-transfer-difference NMR (STD-NMR) spectroscopy. All atoms of the substrate showed interactions with the enzyme. STD-NMR measurements revealed distinct nuclear Overhauser effects in experiments with and without molecular conversion. The spectroscopic analysis led to the identification of several amino acid residues whose substitutions increased the activity of G74C. Single amino acid exchanges increased the activity moderately; structure-guided saturation mutagenesis yielded a quadruple mutant with a 40 times higher reaction rate. This study presents STD-NMR as versatile tool for the analysis of enzyme-substrate interactions in catalytically competent systems and for the guidance of protein engineering.
RESUMEN
Ionotropic glutamate receptors are the most important excitatory receptors in the central nervous system, and their impairment can lead to multiple neuronal diseases. Here, we show that glutamate-induced currents in oocytes expressing GluA1 are increased by coexpression of the schizophrenia-associated phosphoinositide kinase PIP5K2A. This effect was due to enhanced membrane abundance and was blunted by a point mutation (N251S) in PIP5K2A. An increase in GluA1 currents was also observed upon acute injection of PI(4,5)P2, the main product of PIP5K2A. By expression of wild-type and mutant PIP5K2A in human embryonic kidney cells, we were able to provide evidence of impaired kinase activity of the mutant PIP5K2A. We defined the region K813-K823 of GluA1 as critical for the PI(4,5)P2 effect by performing an alanine scan that suggested PI(4,5)P2 binding to this area. A PIP strip assay revealed PI(4,5)P2 binding to the C-terminal GluA1 peptide. The present observations disclose a novel mechanism in the regulation of GluA1.
Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Receptores AMPA/química , Alanina/química , Alanina/genética , Alanina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células HEK293 , Humanos , Datos de Secuencia Molecular , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Receptores AMPA/genética , Receptores AMPA/metabolismo , XenopusRESUMEN
Relapse of cancer months or years after an apparently successful therapy is probably caused by cancer stem cells (CSCs) due to their intrinsic features like dormant periods, radiorefraction, and acquired multidrug resistance (MDR) phenotypes, among other mechanisms of cellular drug evasiveness. Thus, the lack of currently efficacious interventions remains a major problem in the treatment of malignancies, together with the inability of existing drugs to destroy specifically CSCs. Neuroblastomas per se are highly chemotherapy-refractory extracranial tumors in infants with very low survival rates. So far, no effective cytostatics against this kind of tumors are clinically available. Therefore, we have put much effort into the development of agents to efficiently combat this malignancy. For this purpose, we tested several compounds isolated from Cuban propolis on induced CSCs (iCSC) derived from LAN-1 neuroblastoma cells which expressed several characteristics of tumor-initiating cells both in in-vitro and in-vivo models. Some small molecules such as flavonoids and polycyclic polyprenylated acylphloroglucinols (PPAP) were isolated using successive RT-HPLC cycles and identified employing mass spectrometry and NMR spectroscopic techniques. Their cytotoxicity was first screened in sensitive cell systems by MTT proliferation assays and afterwards studied in less sensitive neuroblastoma iCSC models. We found several compounds with considerable anti-iCSC activity, most of them belonging to the PPAP class. The majority of the compounds act in a pleiotropic manner on the molecular biology of tumors although their specific targets remain unclear. Nevertheless, two substances, one of them a flavonoid, induced a strong disruption of tubulin polymerization. In addition, an unknown compound strongly inhibited replicative enzymes like toposimerases I/II and DNA polymerase. Here, we report for the first time cytotoxic activities of small molecules isolated from Caribbean propolis which could be promising therapeutics or lead structures against therapy-refractory neuroblastoma entities. *Contributed equally.
Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Resistencia a Antineoplásicos , Células Madre Neoplásicas/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Própolis/química , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Ratones , Ratones Desnudos , Estructura Molecular , Células Madre Neoplásicas/patología , Neuroblastoma/patología , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Peptide deformylase (PDF) is involved in bacterial protein maturation processes. Originating from the interest in a new antibiotic, tremendous effort was put into the refinement of PDF inhibitors (PDFIs) and their selectivity. We obtained a full NMR backbone assignment the emergent additional protein backbone resonances of ecPDF 1-147 in complex with 2-(5-bromo-1H-indol-3-yl)-N-hydroxyacetamide (2), a potential new structural scaffold for more selective PDFIs. We also determined the complex crystal structures of E. coli PDF (ecPDF fl) and 2. Our structure suggests an alternative ligand conformation within the protein, a possible starting point for further selectivity optimization. The orientation of the second ligand conformation in the crystal structure points toward a small region of the S1' pocket, which differs between bacterial PDFs and human PDF. Moreover, we analyzed the binding mode of 2 via NMR TITAN line shape analysis, revealing an induced fit mechanism.