Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 154(6): 1314-25, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24034253

RESUMEN

G-protein-coupled receptors (GPCRs) are known to possess two different conformations, active and inactive, and they spontaneously alternate between the two in the absence of ligands. Here, we analyzed the agonist-independent GPCR activity for its possible role in receptor-instructed axonal projection. We generated transgenic mice expressing activity mutants of the ß2-adrenergic receptor, a well-characterized GPCR with the highest homology to odorant receptors (ORs). We found that mutants with altered agonist-independent activity changed the transcription levels of axon-targeting molecules--e.g., Neuropilin-1 and Plexin-A1--but not of glomerular segregation molecules--e.g., Kirrel2 and Kirrel3--thus causing shifts in glomerular locations along the anterior-posterior (A-P) axis. Knockout and in vitro experiments demonstrated that Gs, but not Golf, is responsible for mediating the agonist-independent GPCR activity. We conclude that the equilibrium of conformational transitions set by each OR is the major determinant of expression levels of A-P-targeting molecules.


Asunto(s)
Axones/metabolismo , Vías Olfatorias/embriología , Receptores Odorantes/metabolismo , Células Receptoras Sensoriales/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animales , Ratones , Ratones Noqueados , Ratones Transgénicos , Vías Olfatorias/citología , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Odorantes/genética
2.
Environ Toxicol ; 37(2): 335-348, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34741586

RESUMEN

Cadmium (Cd) is a toxic heavy metal and a significant public health concern. Epidemiological studies suggest that Cd is a potential neurotoxicant, and its exposure is associated with cognitive deficits in children, adults, and seniors. Our previous study has found that adulthood-only Cd exposure can impair cognition in mice. However, few studies have addressed the effects of Cd exposure during adolescence on cognitive behavior in animals later in life. In the present study, we exposed 4-week-old male C57BL/6 mice to 3 mg/L Cd via drinking water for 28 weeks and assessed their hippocampus-dependent learning and memory. Cd did not affect anxiety or locomotor activity in the open field test. However, Cd exposure impaired short-term spatial memory and contextual fear memory in mice. A separate cohort of 4-week-old mice was similarly exposed to Cd for 13 weeks to investigate the potential mechanism of Cd neurotoxicity on cognition. We observed that Cd-treated mice had fewer adult-born cells, adult-born neurons, and a reduced proportion of adult-born cells that differentiated into mature neurons in the subgranular zone of the dentate gyrus. These results suggest that Cd exposure from adolescence to adulthood is sufficient to cause cognitive deficits and impair key processes of hippocampal neurogenesis in mice.


Asunto(s)
Cadmio , Memoria , Animales , Cadmio/toxicidad , Cognición , Hipocampo , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis
3.
Proc Natl Acad Sci U S A ; 112(2): 590-5, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25550517

RESUMEN

Mechanosensitive cells are essential for organisms to sense the external and internal environments, and a variety of molecules have been implicated as mechanical sensors. Here we report that odorant receptors (ORs), a large family of G protein-coupled receptors, underlie the responses to both chemical and mechanical stimuli in mouse olfactory sensory neurons (OSNs). Genetic ablation of key signaling proteins in odor transduction or disruption of OR-G protein coupling eliminates mechanical responses. Curiously, OSNs expressing different OR types display significantly different responses to mechanical stimuli. Genetic swap of putatively mechanosensitive ORs abolishes or reduces mechanical responses of OSNs. Furthermore, ectopic expression of an OR restores mechanosensitivity in loss-of-function OSNs. Lastly, heterologous expression of an OR confers mechanosensitivity to its host cells. These results indicate that certain ORs are both necessary and sufficient to cause mechanical responses, revealing a previously unidentified mechanism for mechanotransduction.


Asunto(s)
Mecanotransducción Celular/fisiología , Neuronas Receptoras Olfatorias/fisiología , Receptores Odorantes/fisiología , Animales , Señalización del Calcio , Células HEK293 , Humanos , Mecanorreceptores/fisiología , Mecanotransducción Celular/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Receptores Odorantes/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
J Neurosci ; 35(1): 339-51, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25568126

RESUMEN

The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition.


Asunto(s)
Adenilil Ciclasas/biosíntesis , Regulación Enzimológica de la Expresión Génica , Inhibición Psicológica , Inhibición Prepulso/fisiología , Prosencéfalo/enzimología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Distribución Aleatoria
5.
J Neurosci ; 35(20): 7833-49, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25995470

RESUMEN

Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury.


Asunto(s)
Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Neurogénesis , Neuronas/metabolismo , Bulbo Olfatorio/metabolismo , Olfato , Animales , Células Cultivadas , Memoria , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 7 Activada por Mitógenos/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neuronas/citología , Neuronas/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/fisiología , Transducción de Señal
6.
J Neurosci ; 34(6): 2130-47, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24501354

RESUMEN

Recent studies have shown that inhibition of adult neurogenesis impairs the formation of hippocampus-dependent memory. However, it is not known whether increasing adult neurogenesis affects the persistence of hippocampus-dependent long-term memory. Furthermore, signaling mechanisms that regulate adult neurogenesis are not fully defined. We recently reported that the conditional and targeted knock-out of ERK5 MAP kinase in adult neurogenic regions of the mouse brain attenuates adult neurogenesis in the hippocampus and disrupts several forms of hippocampus-dependent memory. Here, we developed a gain-of-function knock-in mouse model to specifically activate endogenous ERK5 in the neurogenic regions of the adult brain. We report that the selective and targeted activation of ERK5 increases adult neurogenesis in the dentate gyrus by enhancing cell survival, neuronal differentiation, and dendritic complexity. Conditional ERK5 activation also improves the performance of challenging forms of spatial learning and memory and extends hippocampus-dependent long-term memory. We conclude that enhancing signal transduction of a single signaling pathway within adult neural stem/progenitor cells is sufficient to increase adult neurogenesis and improve the persistence of hippocampus-dependent memory. Furthermore, activation of ERK5 may provide a novel therapeutic target to improve long-term memory.


Asunto(s)
Hipocampo/enzimología , Memoria a Largo Plazo/fisiología , Proteína Quinasa 7 Activada por Mitógenos/genética , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Neurogénesis/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Diferenciación Celular/fisiología , Activación Enzimática/fisiología , Técnicas de Sustitución del Gen , Hipocampo/citología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
J Biol Chem ; 289(29): 20129-38, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24895127

RESUMEN

Translation of mRNA plays a critical role in consolidation of long-term memory. Here, we report that markers of initiation of mRNA translation are activated during training for contextual memory and that they undergo diurnal oscillation in the mouse hippocampus with maximal activity observed during the daytime (zeitgeber time 4-8 h). Phosphorylation and activation of eukaryotic translation initiation factor 4E (eIF4E), eIF4E-binding protein 1 (4EBP1), ribosomal protein S6, and eIF4F cap-complex formation, all of which are markers for translation initiation, were higher in the hippocampus during the daytime compared with night. The circadian oscillation in markers of mRNA translation was lost in memory-deficient transgenic mice lacking calmodulin-stimulated adenylyl cyclases. Moreover, disruption of the circadian rhythm blocked diurnal oscillations in eIF4E, 4EBP1, rpS6, Akt, and ERK1/2 phosphorylation and impaired memory consolidation. Furthermore, repeated inhibition of translation in the hippocampus 48 h after contextual training with the protein synthesis inhibitor anisomycin impaired memory persistence. We conclude that repeated activation of markers of translation initiation in hippocampus during the circadian cycle might be critical for memory persistence.


Asunto(s)
Proteínas Portadoras/metabolismo , Ritmo Circadiano/fisiología , Factor 4E Eucariótico de Iniciación/metabolismo , Hipocampo/metabolismo , Memoria a Largo Plazo/fisiología , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Adenilil Ciclasas/deficiencia , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Proteínas de Ciclo Celular , Ritmo Circadiano/genética , Condicionamiento Psicológico/fisiología , Factores Eucarióticos de Iniciación , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Miedo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Iniciación de la Cadena Peptídica Traduccional , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína S6 Ribosómica/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
8.
Int J Mol Sci ; 16(12): 28320-33, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26633363

RESUMEN

Adenylyl Cyclase 3 (AC3) plays an important role in the olfactory sensation-signaling pathway in mice. AC3 deficiency leads to defects in olfaction. However, it is still unknown whether AC3 deficiency affects gene expression or olfactory signal transduction pathways within the main olfactory epithelium (MOE). In this study, gene microarrays were used to screen differentially expressed genes in MOE from AC3 knockout (AC3(-/-)) and wild-type (AC3(+/+)) mice. The differentially expressed genes identified were subjected to bioinformatic analysis and verified by qRT-PCR. Gene expression in the MOE from AC3(-/-) mice was significantly altered, compared to AC3(+/+) mice. Of the 41266 gene probes, 3379 had greater than 2-fold fold change in expression levels between AC3(-/-) and AC3(+/+) mice, accounting for 8% of the total gene probes. Of these genes, 1391 were up regulated, and 1988 were down regulated, including 425 olfactory receptor genes, 99 genes that are specifically expressed in the immature olfactory neurons, 305 genes that are specifically expressed in the mature olfactory neurons, and 155 genes that are involved in epigenetic regulation. Quantitative RT-PCR verification of the differentially expressed epigenetic regulation related genes, olfactory receptors, ion transporter related genes, neuron development and differentiation related genes, lipid metabolism and membrane protein transport etc. related genes showed that P75NTR, Hinfp, Gadd45b, and Tet3 were significantly up-regulated, while Olfr370, Olfr1414, Olfr1208, Golf, Faim2, Tsg101, Mapk10, Actl6b, H2BE, ATF5, Kirrrel2, OMP, Drd2 etc. were significantly down-regulated. In summary, AC3 may play a role in proximal olfactory signaling and play a role in the regulation of differentially expressed genes in mouse MOE.


Asunto(s)
Adenilil Ciclasas/deficiencia , Mucosa Olfatoria/metabolismo , Transcriptoma , Animales , Apoptosis/genética , Proliferación Celular , Biología Computacional/métodos , AMP Cíclico/metabolismo , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Ratones , Ratones Noqueados , Anotación de Secuencia Molecular , Neuronas Receptoras Olfatorias/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal
9.
Learn Mem ; 21(8): 417-23, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25034823

RESUMEN

Perturbing the circadian system by electrolytically lesioning the suprachiasmatic nucleus (SCN) or varying the environmental light:dark schedule impairs memory, suggesting that memory depends on the circadian system. We used a genetic approach to evaluate the role of the molecular clock in memory. Bmal1-/- mice, which are arrhythmic under constant conditions, were examined for hippocampus-dependent memory, LTP at the Schaffer-collateral synapse, and signal transduction activity in the hippocampus. Bmal1-/- mice exhibit impaired contextual fear and spatial memory. Furthermore, LTP in hippocampal slices from Bmal1-/- mice is also significantly decreased relative to that from wild-type mice. Activation of Erk1,2 MAP kinase (MAPK) during training for contextual fear memory and diurnal oscillation of MAPK activity and cAMP in the hippocampus is also lost in Bmal1-/- mice, suggesting that the memory defects are due to reduction of the memory consolidation pathway in the hippocampus. We conclude that critical signaling events in the hippocampus required for memory depend on BMAL1.


Asunto(s)
Relojes Circadianos/fisiología , Hipocampo/fisiología , Potenciación a Largo Plazo , Memoria/fisiología , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Actigrafía , Animales , Western Blotting , Electrochoque , Ensayo de Inmunoadsorción Enzimática , Miedo/fisiología , Pie , Reacción Cataléptica de Congelación/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Técnicas de Cultivo de Tejidos
10.
J Neurosci ; 33(15): 6460-8, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575844

RESUMEN

The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Because mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity, and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK, and phospho-CREB are higher in rapid eye movement (REM) sleep compared with awake mice but are not elevated in non-REM sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity, and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , AMP Cíclico/fisiología , Memoria/fisiología , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Sueño REM/fisiología , Adenilil Ciclasas/genética , Adenilil Ciclasas/fisiología , Animales , Reacción de Prevención/fisiología , Condicionamiento Psicológico/fisiología , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Electroencefalografía/métodos , Electroencefalografía/psicología , Electromiografía/métodos , Electromiografía/psicología , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Transducción de Señal/fisiología , Sueño REM/genética
11.
J Neurosci ; 33(38): 14989-97, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24048828

RESUMEN

Spatial variation in light intensity, called spatial contrast, comprises much of the visual information perceived by mammals, and the relative ability to detect contrast is referred to as contrast sensitivity (Purves et al., 2012). Recently, retinal dopamine D4 receptors (D4Rs) have been implicated in modulating contrast sensitivity (Jackson et al., 2012); however, the cellular and molecular mechanisms have not been elucidated. Our study demonstrates a circadian rhythm of contrast sensitivity that peaks during the daytime, and that its regulation involves interactions of D4Rs, the clock gene Npas2, and the clock-controlled gene adenylyl cyclase 1 (Adcy1) in a subset of retinal ganglion cells (RGCs). Targeted disruption of the gene encoding D4Rs reduces the amplitude of the contrast sensitivity rhythm by reducing daytime sensitivity and abolishes the rhythmic expression of Npas2 and Adcy1 mRNA in the ganglion cell layer (GCL) of the retina. Npas2(-/-) and Adcy1(-/-) mice show strikingly similar reductions in the contrast sensitivity rhythm to that in mice lacking D4Rs. Moreover, Adcy1 transcript rhythms were abolished in the GCL of Npas2(-/-) mice. Luciferase reporter assays demonstrated that the Adcy1 promoter is selectively activated by neuronal PAS-domain protein 2 (NPAS2)/BMAL1. Our results indicate that the contrast sensitivity rhythm is modulated by D4Rs via a signaling pathway that involves NPAS2-mediated circadian regulation of Adcy1. Hence, we have identified a circadian clock mechanism in a subset of RGCs that modulates an important aspect of retinal physiology and visual processing.


Asunto(s)
Ritmo Circadiano/fisiología , Sensibilidad de Contraste/fisiología , Dopamina/metabolismo , Células Ganglionares de la Retina/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción ARNTL/metabolismo , Adenilil Ciclasas/deficiencia , Adenilil Ciclasas/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Transformada , Ritmo Circadiano/genética , Sensibilidad de Contraste/genética , Regulación de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Estimulación Luminosa , Receptores de Dopamina D4/genética , Receptores de Dopamina D4/metabolismo , Retina , Transfección , Agudeza Visual , Vías Visuales/fisiología , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
12.
Proc Natl Acad Sci U S A ; 108(8): 3366-70, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21245308

RESUMEN

The physiological role of vesicular zinc at central glutamatergic synapses remains poorly understood. Here we show that mice lacking the synapse-specific vesicular zinc transporter ZnT3 (ZnT3KO mice) have reduced activation of the Erk1/2 MAPK in hippocampal mossy fiber terminals, disinhibition of zinc-sensitive MAPK tyrosine phosphatase activity, and impaired MAPK signaling during hippocampus-dependent learning. Activity-dependent exocytosis is required for the effect of zinc on presynaptic MAPK and phosphatase activity. ZnT3KO mice have complete deficits in contextual discrimination and spatial working memory. Local blockade of zinc or MAPK in the mossy fiber pathway of wild-type mice impairs contextual discrimination. We conclude that ZnT3 is important for zinc homeostasis modulating presynaptic MAPK signaling and is required for hippocampus-dependent memory.


Asunto(s)
Proteínas Portadoras/fisiología , Hipocampo/fisiología , Proteínas de la Membrana/fisiología , Memoria , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Terminales Presinápticos/metabolismo , Animales , Proteínas de Transporte de Catión , Exocitosis , Sistema de Señalización de MAP Quinasas , Proteínas de Transporte de Membrana , Ratones , Ratones Noqueados , Fibras Musgosas del Hipocampo , Proteínas Tirosina Fosfatasas/metabolismo , Zinc/metabolismo
13.
J Neurosci ; 32(45): 15769-78, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23136416

RESUMEN

Cilia of olfactory sensory neurons are the primary sensory organelles for olfaction. The detection of odorants by the main olfactory epithelium (MOE) depends on coupling of odorant receptors to the type 3 adenylyl cyclase (AC3) in olfactory cilia. We monitored the effect of airflow on electro-olfactogram (EOG) responses and found that the MOE of mice can sense mechanical forces generated by airflow. The airflow-sensitive EOG response in the MOE was attenuated when cAMP was increased by odorants or by forskolin suggesting a common mechanism for airflow and odorant detection. In addition, the sensitivity to airflow was significantly impaired in the MOE from AC3(-/-) mice. We conclude that AC3 in the MOE is required for detecting the mechanical force of airflow, which in turn may regulate odorant perception during sniffing.


Asunto(s)
Adenilil Ciclasas/metabolismo , Mucosa Olfatoria/metabolismo , Percepción Olfatoria/fisiología , Olfato/fisiología , Adenilil Ciclasas/genética , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Odorantes , Mucosa Olfatoria/efectos de los fármacos , Percepción Olfatoria/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Olfato/efectos de los fármacos
14.
J Neurosci ; 32(19): 6444-55, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22573667

RESUMEN

Although there is evidence suggesting that adult neurogenesis may contribute to hippocampus-dependent memory, signaling mechanisms responsible for adult hippocampal neurogenesis are not well characterized. Here we report that ERK5 mitogen-activated protein kinase is specifically expressed in the neurogenic regions of the adult mouse brain. The inducible and conditional knock-out (icKO) of erk5 specifically in neural progenitors of the adult mouse brain attenuated adult hippocampal neurogenesis. It also caused deficits in several forms of hippocampus-dependent memory, including contextual fear conditioning generated by a weak footshock. The ERK5 icKO mice were also deficient in contextual fear extinction and reversal of Morris water maze spatial learning and memory, suggesting that adult neurogenesis plays an important role in hippocampus-dependent learning flexibility. Furthermore, our data suggest a critical role for ERK5-mediated adult neurogenesis in pattern separation, a form of dentate gyrus-dependent spatial learning and memory. Moreover, ERK5 icKO mice have no memory 21 d after training in the passive avoidance test, suggesting a pivotal role for adult hippocampal neurogenesis in the expression of remote memory. Together, our results implicate ERK5 as a novel signaling molecule regulating adult neurogenesis and provide strong evidence that adult neurogenesis is critical for several forms of hippocampus-dependent memory formation, including fear extinction, and for the expression of remote memory.


Asunto(s)
Extinción Psicológica/fisiología , Miedo/fisiología , Eliminación de Gen , Memoria a Largo Plazo/fisiología , Proteína Quinasa 7 Activada por Mitógenos/deficiencia , Proteína Quinasa 7 Activada por Mitógenos/genética , Inhibición Neural/genética , Neurogénesis/fisiología , Envejecimiento/genética , Animales , Giro Dentado/enzimología , Giro Dentado/fisiología , Marcación de Gen/métodos , Masculino , Ratones , Ratones Noqueados , Neurogénesis/genética , Distribución Aleatoria , Transducción de Señal/genética
15.
J Neurosci ; 32(12): 4118-32, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22442076

RESUMEN

ERK5 MAP kinase is highly expressed in the developing nervous system and has been implicated in promoting the survival of immature neurons in culture. However, its role in the development and function of the mammalian nervous system has not been established in vivo. Here, we report that conditional deletion of the erk5 gene in mouse neural stem cells during development reduces the number of GABAergic interneurons in the main olfactory bulb (OB). Our data suggest that this is due to a decrease in proliferation and an increase in apoptosis in the subventricular zone and rostral migratory stream of ERK5 mutant mice. Interestingly, ERK5 mutant mice have smaller OB and are impaired in odor discrimination between structurally similar odorants. We conclude that ERK5 is a novel signaling pathway regulating developmental OB neurogenesis and olfactory behavior.


Asunto(s)
Neuronas GABAérgicas/fisiología , Proteína Quinasa 7 Activada por Mitógenos/deficiencia , Odorantes , Bulbo Olfatorio , Trastornos de la Percepción/genética , Trastornos de la Percepción/patología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Apoptosis/genética , Bromodesoxiuridina/metabolismo , Movimiento Celular , Modelos Animales de Enfermedad , Electrooculografía/métodos , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Glutamato Descarboxilasa/metabolismo , Etiquetado Corte-Fin in Situ , Ventrículos Laterales/embriología , Ventrículos Laterales/crecimiento & desarrollo , Ventrículos Laterales/patología , Ratones , Ratones Transgénicos , Proteína Quinasa 7 Activada por Mitógenos/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/genética , Bulbo Olfatorio/embriología , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/patología , Fosfopiruvato Hidratasa/metabolismo , Factores de Transcripción SOXB1/metabolismo , Ácidos Siálicos/metabolismo , Transducción de Señal , Olfato/genética
16.
J Biol Chem ; 287(28): 23306-17, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22645146

RESUMEN

Recent studies have led to the exciting idea that adult-born neurons in the dentate gyrus of the hippocampus may play a role in hippocampus-dependent memory formation. However, signaling mechanisms that regulate adult hippocampal neurogenesis are not well defined. Here we report that extracellular signal-regulated kinase 5 (ERK5), a member of the mitogen-activated protein kinase family, is selectively expressed in the neurogenic regions of the adult mouse brain. We present evidence that shRNA suppression of ERK5 in adult hippocampal neural stem/progenitor cells (aNPCs) reduces the number of neurons while increasing the number of cells expressing markers for stem/progenitor cells or proliferation. Furthermore, shERK5 attenuates both transcription and neuronal differentiation mediated by Neurogenin 2, a transcription factor expressed in adult hippocampal neural progenitor cells. By contrast, ectopic activation of endogenous ERK5 signaling via expression of constitutive active MEK5, an upstream activating kinase for ERK5, promotes neurogenesis in cultured aNPCs and in the dentate gyrus of the mouse brain. Moreover, neurotrophins including NT3 activate ERK5 and stimulate neuronal differentiation in aNPCs in an ERK5-dependent manner. Finally, inducible and conditional deletion of ERK5 specifically in the neurogenic regions of the adult mouse brain delays the normal progression of neuronal differentiation and attenuates adult neurogenesis in vivo. These data suggest ERK5 signaling as a critical regulator of adult hippocampal neurogenesis.


Asunto(s)
Hipocampo/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Animales , Antineoplásicos Hormonales/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Giro Dentado/citología , Giro Dentado/crecimiento & desarrollo , Giro Dentado/metabolismo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , MAP Quinasa Quinasa 5/genética , MAP Quinasa Quinasa 5/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Proteína Quinasa 7 Activada por Mitógenos/genética , Células 3T3 NIH , Factores de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Interferencia de ARN , Tamoxifeno/farmacología
17.
Neurobiol Learn Mem ; 105: 81-92, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23871742

RESUMEN

Adult neurogenesis occurs in two discrete regions of the adult mammalian brain, the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ) along the lateral ventricles. Signaling mechanisms regulating adult neurogenesis in the SGZ are currently an active area of investigation. Adult-born neurons in the DG functionally integrate into the hippocampal circuitry and form functional synapses, suggesting a role for these neurons in hippocampus-dependent memory formation. Although results from earlier behavioral studies addressing this issue were inconsistent, recent advances in conditional gene targeting technology, viral injection and optogenetic approaches have provided convincing evidence supporting a role for adult-born neurons in the more challenging forms of hippocampus-dependent learning and memory. Here, we briefly summarize these recent studies with a focus on extra signal-regulated kinase (ERK) 5, a MAP kinase whose expression in the adult brain is restricted to the neurogenic regions including the SGZ and SVZ. We review evidence identifying ERK5 as a novel endogenous signaling pathway that regulates the pro-neural transcription factor Neurogenin 2, is activated by neurotrophins and is critical for adult neurogenesis. We discuss studies demonstrating that specific deletion of ERK5 in the adult neurogenic regions impairs several forms of hippocampus-dependent memory formation in mice. These include contextual fear memory extinction, the establishment and maintenance of remote contextual fear memory, and several other challenging forms of hippocampus-dependent memory formation including 48h memory for novel object recognition, contextual fear memory established by a weak foot shock, pattern separation, and reversal of spatial learning and memory. We also briefly discuss current evidence that increasing adult neurogenesis, by small molecules or genetic manipulation, improves memory formation and long-term memory.


Asunto(s)
Giro Dentado/fisiología , Extinción Psicológica/fisiología , Memoria/fisiología , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Neurogénesis , Animales , Giro Dentado/citología , Giro Dentado/enzimología , Miedo/fisiología , Ratones , Ratones Noqueados , Neurogénesis/genética
18.
Learn Mem ; 19(9): 369-74, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-22904367

RESUMEN

One of the intriguing questions in neurobiology is how long-term memory (LTM) traces are established and maintained in the brain. Memory can be divided into at least two temporally and mechanistically distinct forms. Short-term memory (STM) lasts no longer than several hours, while LTM persists for days or longer. A crucial step in the generation of LTM is consolidation, a process in which STM is converted to LTM. Hippocampus-dependent LTM depends on activation of Ca(2+), Erk/MAP kinase (MAPK), and cAMP signaling pathways, as well as de novo gene expression and translation. One of the transcriptional pathways strongly implicated in LTM is the CREB/CRE (calcium, cAMP response element) transcriptional pathway. Interestingly, this transcriptional pathway may also contribute to other forms of neuroplasticity including adaptive responses to drugs. Evidence discussed in this review indicates that activation of the Erk1/2 MAP Kinase (MAPK)/CRE transcriptional pathway during the formation of hippocampus-dependent memory depends on calmodulin (CaM)-stimulated adenylyl cyclases.


Asunto(s)
Adenilil Ciclasas/metabolismo , Hipocampo/enzimología , Memoria/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal/fisiología , Animales , Calcio/metabolismo , Hipocampo/citología , Humanos , Modelos Biológicos , Plasticidad Neuronal/fisiología
19.
J Neurosci ; 31(28): 10174-83, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21752993

RESUMEN

When certain memory becomes obsolete, effective suppression of the previously established memory is essential for animals to adapt to the changing environment. At the cellular level, reversal of synaptic potentiation may be important for neurons to acquire new information and to prevent synaptic saturation. Here, we investigated the function of Ca(2+)-stimulated cAMP signaling in the regulation of bidirectional synaptic plasticity and spatial memory formation in double knock-out mice (DKO) lacking both type 1 and 8 adenylyl cyclases (ACs). In anesthetized animals, the DKO mutants showed defective long-term potentiation (LTP) after a single high-frequency stimulation (HFS) or two spaced HFSs at 100 Hz. However, DKO mice showed normal LTP after a single HFS at 200 Hz or two compressed HFSs at 100 Hz. Interestingly, reversal of synaptic potentiation as well as de novo synaptic depression was impaired in DKO mice. In the Morris water maze, DKO mice showed defective acquisition and memory retention, although the deficits could be attenuated by overtraining or compressed trainings with a shorter intertrial interval. In the reversal platform test, DKO animals were impaired in both relearning and old memory suppression. Furthermore, the extinction of the old spatial memory was not efficient in DKO mice. These data demonstrate that Ca(2+)-stimulated AC activity is important not only for LTP and spatial memory formation but also for the suppression of both previously established synaptic potentiation and old spatial memory.


Asunto(s)
Adenilil Ciclasas/metabolismo , Calcio/metabolismo , Recuerdo Mental/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Adenilil Ciclasas/genética , Animales , Estimulación Eléctrica , Electrofisiología , Hipocampo/fisiología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Noqueados , Neuronas/metabolismo , Sinapsis/genética
20.
J Neurosci ; 31(15): 5557-61, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21490195

RESUMEN

Although primary cilia are found on neurons throughout the brain, their physiological function remains elusive. Human ciliopathies are associated with cognition defects, and transgenic mice lacking proteins expressed in primary cilia exhibit defects in learning and memory. Recently, it was reported that mice lacking the G-protein-coupling receptor somatostatin receptor-3 (SSTR3), a protein expressed predominately in the primary cilia of neurons, have defective memory for novel object recognition and lower cAMP levels in the brain. Since SSTR3 is coupled to regulation of adenylyl cyclase, this suggests that adenylyl cyclase activity in primary cilia of CNS neurons may be critical for some forms of learning and memory. Because the type 3 adenylyl cyclase (AC3) is expressed in primary cilia of hippocampal neurons, we examined AC3(-/-) mice for several forms of learning and memory. Here, we report that AC3(-/-) mice show no short-term memory for novel objects and fail to exhibit extinction of contextual fear conditioning. They also show impaired learning and memory for temporally dissociative passive avoidance. Since AC3 is exclusively expressed in primary cilia, we conclude that cAMP signals generated within primary cilia contribute to some forms of learning and memory, including extinction of contextual fear conditioning.


Asunto(s)
Adenilil Ciclasas/fisiología , Cilios/fisiología , AMP Cíclico/fisiología , Extinción Psicológica/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Transducción de Señal/fisiología , Adenilil Ciclasas/genética , Animales , Reacción de Prevención/fisiología , Miedo/fisiología , Hipocampo/citología , Hipocampo/fisiología , Inmunohistoquímica , Trastornos de la Memoria/genética , Trastornos de la Memoria/psicología , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reconocimiento en Psicología/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA