Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pflugers Arch ; 470(9): 1359-1376, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29797067

RESUMEN

Kv7 channels determine the resting membrane potential of neurons and regulate their excitability. Even though dysfunction of Kv7 channels has been linked to several debilitating childhood neuronal disorders, the ontogeny of the constituent genes, which encode Kv7 channels (KNCQ), and expression of their subunits have been largely unexplored. Here, we show that developmentally regulated expression of specific KCNQ mRNA and Kv7 channel subunits in mouse and human striatum is crucial to the functional maturation of mouse striatal neurons and human-induced pluripotent stem cell-derived neurons. This demonstrates their pivotal role in normal development and maturation, the knowledge of which can now be harnessed to synchronise and accelerate neuronal differentiation of stem cell-derived neurons, enhancing their utility for disease modelling and drug discovery.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Canal de Potasio KCNQ1/metabolismo , Neuronas/metabolismo , Regulación hacia Arriba/fisiología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Humanos , Potenciales de la Membrana/fisiología , Ratones , ARN Mensajero/metabolismo
2.
Hum Mol Genet ; 24(17): 4958-70, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26063761

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by motor and cognitive impairments, involving striatum, cortex and hippocampus. Synaptic and memory dysfunction in HD mouse models have been related to low levels of brain-derived neurotrophic factor (BDNF) and imbalance between TrkB and p75(NTR) receptors. In addition, astrocyte over-activation has also been suggested to contribute to HD cognitive deficits. Fingolimod (FTY720), a modulator of sphingosine-1 phosphate (S1P) receptors, has been shown to increase BDNF levels and to reduce astrogliosis, proving its potential to regulate trophic support and inflammatory response. In this view, we have investigated whether FTY720 improves synaptic plasticity and memory in the R6/1 mouse model of HD, through regulation of BDNF signaling and astroglial reactivity. Chronic administration of FTY720 from pre-symptomatic stages ameliorated long-term memory deficits and dendritic spine loss in CA1 hippocampal neurons from R6/1 mice. Furthermore, FTY720 delivery prevented astrogliosis and over-activation of nuclear factor kappa beta (NF-κB) signaling in the R6/1 hippocampus, reducing tumor necrosis factor alpha (TNFα) and induced nitric oxide synthase (iNOS) levels. TNFα decrease correlated with the normalization of p75(NTR) expression in the hippocampus of FTY720-treated R6/1 mice, thus preventing p75(NTR)/TrkB imbalance. In addition, FTY720 increased cAMP levels and promoted phosphorylation of CREB and RhoA in the hippocampus of R6/1 mice, further supporting its role in the enhancement of synaptic plasticity. Our findings provide new insights into the mechanism of action of FTY720 and reveal a novel therapeutic strategy to treat memory deficits in HD.


Asunto(s)
Astrocitos/metabolismo , Clorhidrato de Fingolimod/farmacología , Hipocampo/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Memoria/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , AMP Cíclico/metabolismo , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Clorhidrato de Fingolimod/administración & dosificación , Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/patología , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Inflamación/metabolismo , Inflamación/patología , Ratones , ARN Mensajero/genética , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de Factor de Crecimiento Nervioso , Regulación hacia Arriba
3.
J Neuroinflammation ; 14(1): 54, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28302135

RESUMEN

BACKGROUND: CCAAT/enhancer binding protein ß (C/EBPß) is a transcription factor that regulates the expression of important pro-inflammatory genes in microglia. Mice deficient for C/EBPß show protection against excitotoxic and ischemic CNS damage, but the involvement in this neuroprotective effect of the various C/EBPß-expressing cell types is not solved. Since C/EBPß-deficient microglia show attenuated neurotoxicity in culture, we hypothesized that specific C/EBPß deficiency in microglia could be neuroprotective in vivo. In this study, we have tested this hypothesis by generating mice with myeloid C/EBPß deficiency. METHODS: Mice with myeloid C/EBPß deficiency were generated by crossing LysMCre and C/EBPßfl/fl mice. Primary microglial cultures from C/EBPßfl/fl and LysMCre-C/EBPßfl/fl mice were treated with lipopolysaccharide ± interferon γ (IFNγ) for 6 h, and gene expression was analyzed by RNA sequencing. Gene expression and C/EBPß deletion were analyzed in vivo in microglia isolated from the brains of C/EBPßfl/fl and LysMCre-C/EBPßfl/fl mice treated systemically with lipolysaccharide or vehicle. Mice of LysMCre-C/EBPßfl/fl or control genotypes were subjected to experimental autoimmune encephalitis and analyzed for clinical signs for 52 days. One- or two-way ANOVA or Kruskal-Wallis with their appropriate post hoc tests were used. RESULTS: LysMCre-C/EBPßfl/fl mice showed an efficiency of C/EBPß deletion in microglia of 100 and 90% in vitro and in vivo, respectively. These mice were devoid of female infertility, perinatal mortality and reduced lifespan that are associated to full C/EBPß deficiency. Transcriptomic analysis of C/EBPß-deficient primary microglia revealed C/EBPß-dependent expression of 1068 genes, significantly enriched in inflammatory and innate immune responses GO terms. In vivo, microglial expression of the pro-inflammatory genes Cybb, Ptges, Il23a, Tnf and Csf3 induced by systemic lipopolysaccharide injection was also blunted by C/EBPß deletion. CNS expression of C/EBPß was upregulated in experimental autoimmune encephalitis and in multiple sclerosis samples. Finally, LysMCre-C/EBPßfl/fl mice showed robust attenuation of clinical signs in experimental autoimmune encephalitis. CONCLUSION: This study provides new data that support a central role for C/EBPß in the biology of activated microglia, and it offers proof of concept for the therapeutic potential of microglial C/EBPß inhibition in multiple sclerosis.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/deficiencia , Encefalomielitis Autoinmune Experimental/patología , Microglía/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Animales Recién Nacidos , Ontologías Biológicas , Proteína beta Potenciadora de Unión a CCAAT/genética , Antígeno CD11b/metabolismo , Células Cultivadas , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/terapia , Femenino , Humanos , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Esclerosis Múltiple/patología , Glicoproteína Mielina-Oligodendrócito/toxicidad , Óxido Nítrico/metabolismo , Fragmentos de Péptidos/toxicidad , Fagocitosis/efectos de los fármacos , Fagocitosis/genética
4.
Am J Physiol Cell Physiol ; 310(7): C520-41, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26718628

RESUMEN

Although numerous protocols have been developed for differentiation of neurons from a variety of pluripotent stem cells, most have concentrated on being able to specify effectively appropriate neuronal subtypes and few have been designed to enhance or accelerate functional maturity. Of those that have, most employ time courses of functional maturation that are rather protracted, and none have fully characterized all aspects of neuronal function, from spontaneous action potential generation through to postsynaptic receptor maturation. Here, we describe a simple protocol that employs the sequential addition of just two supplemented media that have been formulated to separate the two key phases of neural differentiation, the neurogenesis and synaptogenesis, each characterized by different signaling requirements. Employing these media, this new protocol synchronized neurogenesis and enhanced the rate of maturation of pluripotent stem cell-derived neural precursors. Neurons differentiated using this protocol exhibited large cell capacitance with relatively hyperpolarized resting membrane potentials; moreover, they exhibited augmented: 1) spontaneous electrical activity; 2) regenerative induced action potential train activity; 3) Na(+) current availability, and 4) synaptic currents. This was accomplished by rapid and uniform development of a mature, inhibitory GABAAreceptor phenotype that was demonstrated by Ca(2+) imaging and the ability of GABAAreceptor blockers to evoke seizurogenic network activity in multielectrode array recordings. Furthermore, since this protocol can exploit expanded and frozen prepatterned neural progenitors to deliver mature neurons within 21 days, it is both scalable and transferable to high-throughput platforms for the use in functional screens.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Medios de Cultivo/química , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Western Blotting , Ciclo Celular/fisiología , Línea Celular , Técnicas de Cocultivo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Microscopía Electrónica de Rastreo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Técnicas de Placa-Clamp , Receptores de GABA-A/metabolismo
5.
Glia ; 61(10): 1607-19, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23893854

RESUMEN

The eicosanoid prostaglandin E2 (PGE2 ) plays important roles in neuroinflammation and it is produced by the sequential action of the enzymes cyclooxygenase-2 (COX-2) and prostaglandin E synthase (PTGES). The expression of both enzymes and the production of PGE2 are increased in neuroinflammation. The objective of this study was to elucidate whether the transcription factor CCAAT/enhancer binding protein ß (C/EBPß) regulates the expression of prostaglandin synthesis enzymes in neuroinflammation. To this aim, the expression of these enzymes in wild-type and C/EBPß-null mice was analyzed in vitro and in vivo. In mixed glial cultures, lipopolysaccharide (LPS) ± interferon γ (IFN-γ) induced C/EBPß binding to COX-2 and PTGES promoters. LPS ± IFN-γ-induced increases in PTGES expression and in PGE2 production in mixed glial and microglial cultures were abrogated in the absence of C/EBPß. Also, increased brain PTGES expression induced by systemic LPS administration was markedly reduced in C/EBPß-null mice. In contrast to PTGES, the induction of COX-2 expression in vitro or in vivo was not markedly affected by the absence of C/EBPß. These results demonstrate that C/EBPß regulates PTGES expression and PGE2 production by activated microglial cells in vitro and point to C/EBPß as a regulator of PTGES expression in vivo in the inflamed central nervous system. Altogether, these findings strengthen the proposed role of C/EBPß as a key player in the orchestration of neuroinflammatory gene response.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Dinoprostona/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Neuroglía/metabolismo , Análisis de Varianza , Animales , Factor de Unión a CCAAT/deficiencia , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Embrión de Mamíferos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Interferón gamma/farmacología , Oxidorreductasas Intramoleculares/genética , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía/efectos de los fármacos , Prostaglandina-E Sintasas , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , ARN Mensajero/metabolismo
6.
J Neuroinflammation ; 9: 165, 2012 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-22776069

RESUMEN

BACKGROUND: In physiological conditions, it is postulated that neurons control microglial reactivity through a series of inhibitory mechanisms, involving either cell contact-dependent, soluble-factor-dependent or neurotransmitter-associated pathways. In the current study, we focus on CD200R1, a microglial receptor involved in one of these cell contact-dependent mechanisms. CD200R1 activation by its ligand, CD200 (mainly expressed by neurons in the central nervous system),is postulated to inhibit the pro-inflammatory phenotype of microglial cells, while alterations in CD200-CD200R1 signalling potentiate this phenotype. Little is known about the regulation of CD200R1 expression in microglia or possible alterations in the presence of pro-inflammatory stimuli. METHODS: Murine primary microglial cultures, mixed glial cultures from wild-type and CCAAT/enhancer binding protein ß (C/EBPß)-deficient mice, and the BV2 murine cell line overexpressing C/EBPß were used to study the involvement of C/EBPß transcription factor in the regulation of CD200R1 expression in response to a proinflammatory stimulus (lipopolysaccharide (LPS)). Binding of C/EBPß to the CD200R1 promoter was determined by quantitative chromatin immunoprecipitation (qChIP). The involvement of histone deacetylase 1 in the control of CD200R1 expression by C/EBPß was also determined by co-immunoprecipitation and qChIP. RESULTS: LPS treatment induced a decrease in CD200R1 mRNA and protein expression in microglial cells, an effect that was not observed in the absence of C/EBPß. C/EBPß overexpression in BV2 cells resulted in a decrease in basal CD200R1 mRNA and protein expression. In addition, C/EBPß binding to the CD200R1 promoter was observed in LPS-treated but not in control glial cells, and also in control BV2 cells overexpressing C/EBPß. Finally, we observed that histone deacetylase 1 co-immunoprecipitated with C/EBPß and showed binding to a C/EBPß consensus sequence of the CD200R1 promoter in LPS-treated glial cells. Moreover, histone deacetylase 1 inhibitors reversed the decrease in CD200R1 expression induced by LPS treatment. CONCLUSIONS: CD200R1 expression decreases in microglial cells in the presence of a pro-inflammatory stimulus, an effect that is regulated, at least in part, by C/EBPß. Histone deacetylase 1 may mediate C/EBPß inhibition of CD200R1 expression, through a direct effect on C/EBPß transcriptional activity and/or on chromatin structure.


Asunto(s)
Antígenos de Superficie/biosíntesis , Proteínas Potenciadoras de Unión a CCAAT/biosíntesis , Regulación de la Expresión Génica , Microglía/metabolismo , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/biosíntesis , Animales , Antígenos de Superficie/genética , Proteína beta Potenciadora de Unión a CCAAT , Proteínas Potenciadoras de Unión a CCAAT/genética , Células Cultivadas , Técnicas de Cocultivo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Orexina , Unión Proteica/fisiología , Receptores de Superficie Celular/genética
7.
Animals (Basel) ; 12(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36290164

RESUMEN

A significant debate is ongoing on the effectiveness of animal experimentation, due to the increasing reports of failure in the translation of results from preclinical animal experiments to human patients. Scientific, ethical, social and economic considerations linked to the use of animals raise concerns in a variety of societal contributors (regulators, policy makers, non-governmental organisations, industry, etc.). The aim of this study was to record researchers' voices about their vision on this science evolution, to reconstruct as truthful as possible an image of the reality of health and life science research, by using a key instrument in the hands of the researcher: the experimental models. Hence, we surveyed European-based health and life sciences researchers, to reconstruct and decipher the varying orientations and opinions of this community over these large transformations. In the interest of advancing the public debate and more accurately guide the policy of research, it is important that policy makers, society, scientists and all stakeholders (1) mature as comprehensive as possible an understanding of the researchers' perspectives on the selection and establishment of the experimental models, and (2) that researchers publicly share the research community opinions regarding the external factors influencing their professional work. Our results highlighted a general homogeneity of answers from the 117 respondents. However, some discrepancies on specific key issues and topics were registered in the subgroups. These recorded divergent views might prove useful to policy makers and regulators to calibrate their agenda and shape the future of the European health and life science research. Overall, the results of this pilot study highlight the need of a continuous, open and broad discussion between researchers and science policy stakeholders.

8.
Artículo en Inglés | MEDLINE | ID: mdl-36497907

RESUMEN

Developmental toxicity testing urgently requires the implementation of human-relevant new approach methodologies (NAMs) that better recapitulate the peculiar nature of human physiology during pregnancy, especially the placenta and the maternal/fetal interface, which represent a key stage for human lifelong health. Fit-for-purpose NAMs for the placental-fetal interface are desirable to improve the biological knowledge of environmental exposure at the molecular level and to reduce the high cost, time and ethical impact of animal studies. This article reviews the state of the art on the available in vitro (placental, fetal and amniotic cell-based systems) and in silico NAMs of human relevance for developmental toxicity testing purposes; in addition, we considered available Adverse Outcome Pathways related to developmental toxicity. The OECD TG 414 for the identification and assessment of deleterious effects of prenatal exposure to chemicals on developing organisms will be discussed to delineate the regulatory context and to better debate what is missing and needed in the context of the Developmental Origins of Health and Disease hypothesis to significantly improve this sector. Starting from this analysis, the development of a novel human feto-placental organ-on-chip platform will be introduced as an innovative future alternative tool for developmental toxicity testing, considering possible implementation and validation strategies to overcome the limitation of the current animal studies and NAMs available in regulatory toxicology and in the biomedical field.


Asunto(s)
Placenta , Pruebas de Toxicidad , Animales , Humanos , Femenino , Embarazo , Pruebas de Toxicidad/métodos , Medición de Riesgo
9.
J Neuroinflammation ; 8: 156, 2011 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-22074460

RESUMEN

BACKGROUND: Microglia and astrocytes respond to homeostatic disturbances with profound changes of gene expression. This response, known as glial activation or neuroinflammation, can be detrimental to the surrounding tissue. The transcription factor CCAAT/enhancer binding protein ß (C/EBPß) is an important regulator of gene expression in inflammation but little is known about its involvement in glial activation. To explore the functional role of C/EBPß in glial activation we have analyzed pro-inflammatory gene expression and neurotoxicity in murine wild type and C/EBPß-null glial cultures. METHODS: Due to fertility and mortality problems associated with the C/EBPß-null genotype we developed a protocol to prepare mixed glial cultures from cerebral cortex of a single mouse embryo with high yield. Wild-type and C/EBPß-null glial cultures were compared in terms of total cell density by Hoechst-33258 staining; microglial content by CD11b immunocytochemistry; astroglial content by GFAP western blot; gene expression by quantitative real-time PCR, western blot, immunocytochemistry and Griess reaction; and microglial neurotoxicity by estimating MAP2 content in neuronal/microglial cocultures. C/EBPß DNA binding activity was evaluated by electrophoretic mobility shift assay and quantitative chromatin immunoprecipitation. RESULTS: C/EBPß mRNA and protein levels, as well as DNA binding, were increased in glial cultures by treatment with lipopolysaccharide (LPS) or LPS + interferon γ (IFNγ). Quantitative chromatin immunoprecipitation showed binding of C/EBPß to pro-inflammatory gene promoters in glial activation in a stimulus- and gene-dependent manner. In agreement with these results, LPS and LPS+IFNγ induced different transcriptional patterns between pro-inflammatory cytokines and NO synthase-2 genes. Furthermore, the expressions of IL-1ß and NO synthase-2, and consequent NO production, were reduced in the absence of C/EBPß. In addition, neurotoxicity elicited by LPS+IFNγ-treated microglia co-cultured with neurons was completely abolished by the absence of C/EBPß in microglia. CONCLUSIONS: These findings show involvement of C/EBPß in the regulation of pro-inflammatory gene expression in glial activation, and demonstrate for the first time a key role for C/EBPß in the induction of neurotoxic effects by activated microglia.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Expresión Génica , Inflamación/genética , Inflamación/metabolismo , Microglía/fisiología , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Proteína beta Potenciadora de Unión a CCAAT/genética , Células Cultivadas , Técnicas de Cocultivo , Citocinas/genética , Citocinas/metabolismo , Femenino , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/citología , Microglía/efectos de los fármacos , Neuronas/citología , Neuronas/fisiología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Embarazo
10.
J Neurosci Res ; 88(5): 1113-23, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19908286

RESUMEN

The transcription factor CCAAT/enhancer binding protein delta (C/EBP delta) regulates transcription of genes that play important roles in glial activation. Previous studies have shown the astroglial expression of C/EBP delta but the microglial expression of C/EBP delta remains virtually unexplored, with the exception of two microarray studies. In this report, using murine primary cultures and BV2 cells we clearly demonstrate that C/EBP delta is expressed by microglia and it is upregulated in microglial activation. Lipopolysaccharide upregulates C/EBP delta both in microglia and in astrocytes. This effect is time-dependent, with a maximum effect at 3 hr at mRNA level and at 4-8 hr at protein level, and concentration-dependent, with a maximum effect at 100 ng/mL. The lipopolysaccharide-induced C/EBP delta upregulation in BV2 microglia is mimicked by agonists of the toll-like receptors 2, 3 and 9 and can be prevented by an inhibitor of extracellular signal-regulated kinase activation. C/EBP delta from activated BV2 microglia binds to the cyclooxygenase-2 promoter and forms complexes with C/EBP beta isoforms. These results point to C/EBP delta as a putative key regulator of proinflammatory gene expression in microglial activation.


Asunto(s)
Proteína delta de Unión al Potenciador CCAAT/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Encefalitis/genética , Encefalitis/metabolismo , Gliosis/metabolismo , Microglía/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/inmunología , Astrocitos/metabolismo , Sitios de Unión/fisiología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Ciclooxigenasa 2/genética , Relación Dosis-Respuesta a Droga , Encefalitis/inmunología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/fisiología , Gliosis/inmunología , Gliosis/fisiopatología , Mediadores de Inflamación/farmacología , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/inmunología , Regiones Promotoras Genéticas/fisiología , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Activación Transcripcional/fisiología , Regulación hacia Arriba/genética
11.
Front Cell Neurosci ; 14: 250, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848630

RESUMEN

Neurodegenerative disorders such as Parkinson's (PD) and Huntington's disease (HD) are characterized by a selective detrimental impact on neurons in a specific brain area. Currently, these diseases have no cures, although some promising trials of therapies that may be able to slow the loss of brain cells are underway. Cell therapy is distinguished by its potential to replace cells to compensate for those lost to the degenerative process and has shown a great potential to replace degenerated neurons in animal models and in clinical trials in PD and HD patients. Fetal-derived neural progenitor cells, embryonic stem cells or induced pluripotent stem cells are the main cell sources that have been tested in cell therapy approaches. Furthermore, new strategies are emerging, such as the use of adult stem cells, encapsulated cell lines releasing trophic factors or cell-free products, containing an enriched secretome, which have shown beneficial preclinical outcomes. One of the major challenges for these potential new treatments is to overcome the host immune response to the transplanted cells. Immune rejection can cause significant alterations in transplanted and endogenous tissue and requires immunosuppressive drugs that may produce adverse effects. T-, B-lymphocytes and microglia have been recognized as the main effectors in striatal graft rejection. This review aims to summarize the preclinical and clinical studies of cell therapies in PD and HD. In addition, the precautions and strategies to ensure the highest quality of cell grafts, the lowest risk during transplantation and the reduction of a possible immune rejection will be outlined. Altogether, the wide-ranging possibilities of advanced therapy medicinal products (ATMPs) could make therapeutic treatment of these incurable diseases possible in the near future.

12.
Cell Death Differ ; 27(2): 509-524, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31209363

RESUMEN

α-Synuclein is the main component of Lewy bodies, the intracellular protein aggregates representing the histological hallmark of Parkinson's disease. Elevated α-synuclein levels and mutations in SNCA gene are associated with increased risk for Parkinson's disease. Despite this, little is known about the molecular mechanisms regulating SNCA transcription. CCAAT/enhancer binding protein (C/EBP) ß and δ are b-zip transcription factors that play distinct roles in neurons and glial cells. C/EBPß overexpression increases SNCA expression in neuroblastoma cells and putative C/EBPß and δ binding sites are present in the SNCA genomic region suggesting that these proteins could regulate SNCA transcription. Based on these premises, the goal of this study was to determine if C/EBPß and δ regulate the expression of SNCA. We first observed that α-synuclein CNS expression was not affected by C/EBPß deficiency but it was markedly increased in C/EBPδ-deficient mice. This prompted us to characterize further the role of C/EBPδ in SNCA transcription. C/EBPδ absence led to the in vivo increase of α-synuclein in all brain regions analyzed, both at mRNA and protein level, and in primary neuronal cultures. In agreement with this, CEBPD overexpression in neuroblastoma cells and in primary neuronal cultures markedly reduced SNCA expression. ChIP experiments demonstrated C/EBPδ binding to the SNCA genomic region of mice and humans and luciferase experiments showed decreased expression of a reporter gene attributable to C/EBPδ binding to the SNCA promoter. Finally, decreased CEBPD expression was observed in the substantia nigra and in iPSC-derived dopaminergic neurons from Parkinson patients resulting in a significant negative correlation between SNCA and CEBPD levels. This study points to C/EBPδ as an important repressor of SNCA transcription and suggests that reduced C/EBPδ neuronal levels could be a pathogenic factor in Parkinson's disease and other synucleinopathies and C/EBPδ activity a potential pharmacological target for these neurological disorders.


Asunto(s)
Proteína delta de Unión al Potenciador CCAAT/genética , alfa-Sinucleína/genética , Anciano , Animales , Proteína delta de Unión al Potenciador CCAAT/deficiencia , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , alfa-Sinucleína/metabolismo
13.
Front Cell Neurosci ; 14: 93, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477064

RESUMEN

The role of the WDFY1 protein has been studied as a TLR3/4 scaffold/recruiting protein in the immune system and in different oncogenic conditions. However, its function in brain remains poorly understood. We have found that in mice devoid of Helios (He-/- mice), a transcription factor specifically expressed during the development of the immune cells and the central nervous system, there is a permanent and sustained increase of Wdfy1 gene expression in the striatum and hippocampus. Interestingly, we observed that WDFY1 protein levels were also increased in the hippocampus and dorsolateral prefrontal cortex of schizophrenic patients, but not in the hippocampus of Alzheimer's disease patients with an associated psychotic disorder. Accordingly, young He-/- mice displayed several schizophrenic-like behaviors related to dysfunctions in the striatum and hippocampus. These changes were associated with an increase in spine density in medium spiny neurons (MSNs) and with a decrease in the number and size of PSD-95-positive clusters in the stratum radiatum of the CA1. Moreover, these alterations in structural synaptic plasticity were associated with a strong reduction of neuronal NF-κB in the pyramidal layer of the CA1 in He-/- mice. Altogether, our data indicate that alterations involving the molecular axis Helios-WDFY1 in neurons during the development of core brain regions could be relevant for the pathophysiology of neuropsychiatric disorders such as schizophrenia.

14.
Front Cell Neurosci ; 14: 163, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625064

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder in which the striatum is the most affected brain region. Although a chronic inflammatory microglial reaction that amplifies disease progression has been described in HD patients, some murine models develop symptoms without inflammatory microglial activation. Thus, dysfunction of non-inflammatory microglial activity could also contribute to the early HD pathological process. Here, we show the involvement of microglia and particularly fractalkine signaling in the striatal synaptic dysfunction of R6/1 mice. We found reduced fractalkine gene expression and protein concentration in R6/1 striata from 8 to 20 weeks of age. Consistently, we also observed a down-regulation of fractalkine levels in the putamen of HD patients and in HD patient hiPSC-derived neurons. Automated cell morphology analysis showed a non-inflammatory ramified microglia in the striatum of R6/1 mice. However, we found increased PSD-95-positive puncta inside microglia, indicative of synaptic pruning, before HD motor symptoms start to manifest. Indeed, microglia appeared to be essential for striatal synaptic function, as the inhibition of microglial activity with minocycline impaired the induction of corticostriatal long-term depression (LTD) in wild-type mice. Notably, fractalkine administration restored impaired corticostriatal LTD in R6/1 mice. Our results unveil a role for fractalkine-dependent neuron-microglia interactions in the early striatal synaptic dysfunction characteristic of HD.

15.
Mol Neurobiol ; 57(6): 2766-2798, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32356172

RESUMEN

Human pluripotent stem cells (hPSCs) are a powerful tool for modelling human development. In recent years, hPSCs have become central in cell-based therapies for neurodegenerative diseases given their potential to replace affected neurons. However, directing hPSCs into specific neuronal types is complex and requires an accurate protocol that mimics endogenous neuronal development. Here we describe step-by-step a fast feeder-free neuronal differentiation protocol to direct hPSCs to mature forebrain neurons in 37 days in vitro (DIV). The protocol is based upon a combination of specific morphogens, trophic and growth factors, ions, neurotransmitters and extracellular matrix elements. A human-induced PSC line (Ctr-Q33) and a human embryonic stem cell line (GEN-Q18) were used to reinforce the potential of the protocol. Neuronal activity was analysed by single-cell calcium imaging. At 8 DIV, we obtained a homogeneous population of hPSC-derived neuroectodermal progenitors which self-arranged in bi-dimensional neural tube-like structures. At 16 DIV, we generated hPSC-derived neural progenitor cells (NPCs) with mostly a subpallial identity along with a subpopulation of pallial NPCs. Terminal in vitro neuronal differentiation was confirmed by the expression of microtubule associated protein 2b (Map 2b) by almost 100% of hPSC-derived neurons and the expression of specific-striatal neuronal markers including GABA, CTIP2 and DARPP-32. HPSC-derived neurons showed mature and functional phenotypes as they expressed synaptic markers, voltage-gated ion channels and neurotransmitter receptors. Neurons displayed diverse spontaneous activity patterns that were classified into three major groups, namely "high", "intermediate" and "low" firing neurons. Finally, transplantation experiments showed that the NPCs survived and differentiated within mouse striatum for at least 3 months. NPCs integrated host environmental cues and differentiated into striatal medium-sized spiny neurons (MSNs), which successfully integrated into the endogenous circuitry without teratoma formation. Altogether, these findings demonstrate the potential of this robust human neuronal differentiation protocol, which will bring new opportunities for the study of human neurodevelopment and neurodegeneration, and will open new avenues in cell-based therapies, pharmacological studies and alternative in vitro toxicology.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Cuerpo Estriado/cirugía , Neurogénesis/fisiología , Neuronas/trasplante , Células Madre Pluripotentes/citología , Animales , Línea Celular , Cuerpo Estriado/citología , Humanos , Ratones
16.
PLoS One ; 14(12): e0224901, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31790427

RESUMEN

In Huntington's disease (HD), striatal medium spiny neurons (MSNs) are particularly sensitive to the presence of a CAG repeat in the huntingtin (HTT) gene. However, there are many evidences that cells from the peripheral immune system and central nervous system (CNS) immune cells, namely microglia, play an important role in the etiology and the progression of HD. However, it remains unclear whether MSNs neurodegeneration is mediated by a non-cell autonomous mechanism. The homeostasis in the healthy CNS is maintained by several mechanisms of interaction between all brain cells. Neurons can control microglia activation through several inhibitory mechanisms, such as the CD200-CD200R1 interaction. Due to the complete lack of knowledge about the CD200-CD200R1 system in HD, we determined the temporal patterns of CD200 and CD200R1 expression in the neocortex, hippocampus and striatum in the HD mouse models R6/1 and HdhQ111/7 from pre-symptomatic to manifest stages. In order to explore any alteration in the peripheral immune system, we also studied the levels of expression of CD200 and CD200R1 in whole blood. Although CD200R1 expression was not altered, we observed and increase in CD200 gene expression and protein levels in the brain parenchyma of all the regions we examined, along with HD pathogenesis in R6/1 mice. Interestingly, the expression of CD200 mRNA was also up-regulated in blood following a similar temporal pattern. These results suggest that canonical neuronal-microglial communication through CD200-CD200R1 interaction is not compromised, and CD200 up-regulation in R6/1 brain parenchyma could represent a neurotrophic signal to sustain or extend neuronal function in the latest stages of HD as pro-survival mechanism.


Asunto(s)
Antígenos CD/genética , Enfermedad de Huntington/genética , Regulación hacia Arriba , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hipocampo/metabolismo , Humanos , Enfermedad de Huntington/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Actividad Motora , Neostriado/metabolismo , ARN Mensajero/genética
17.
Neuroscience ; 333: 320-30, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27475250

RESUMEN

Human Dopamine- and cAMP-regulated phosphoprotein of molecular weight 32kDa (DARPP-32, also known as PPP1R1B) gene codes for different transcripts that are mainly translated into two DARPP-32 protein isoforms, full length (fl)-DARPP-32 and truncated (t)-DARPP. The t-DARPP lacks the first 36 residues at the N-terminal, which alters its function. In the central nervous system, fl-DARPP-32 is highly expressed in GABAergic striatal medium spiny neurons (MSNs), where it integrates dopaminergic and glutamatergic input signaling. However, no information about human DARPP-32 isoform expression during MSNs maturation is available. In this study, our aim is to determine the expression of the two DARPP-32 isoforms in human fetal and adult striatal samples. We show that DARPP-32 isoform expression is differentially regulated during human striatal development, with the t-DARPP isoform being virtually absent from whole ganglionic eminence (WGE) and highly induced in the adult striatum (in both caudate and putamen). We next compared the four most common anti-DARPP-32 antibodies used in human specimens, to study their recognition of the two isoforms in fetal and adult human striatal samples by western blot and immunohistochemistry. The four antibodies specifically identify the fl-DARPP-32 in both fetal and adult samples, while t-DARPP form was only detected in adult striatal samples. In addition, the lack of t-DARPP recognition in human adult striatum by the antibody generated against the full-length domain produces in turn different efficacy by immunohistochemical analysis. In conclusion, our results show that expression of human DARPP-32 protein isoforms depends on the striatal neurodevelopmental stage with t-DARPP being specific for the human adult striatum.


Asunto(s)
Cuerpo Estriado/crecimiento & desarrollo , Cuerpo Estriado/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Western Blotting , Cuerpo Estriado/citología , Cuerpo Estriado/embriología , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Isoformas de Proteínas , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido
18.
Mol Neurobiol ; 53(5): 2857-2868, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-25876513

RESUMEN

RTP801 expression is induced by cellular stress and has a pro-apoptotic function in non-proliferating differentiated cells such as neurons. In several neurodegenerative disorders, including Parkinson's disease and Alzheimer's disease, elevated levels of RTP801 have been observed, which suggests a role for RTP801 in neuronal death. Neuronal death is also a pathological hallmark in Huntington's disease (HD), an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Currently, the exact mechanisms underlying mutant huntingtin (mhtt)-induced toxicity are still unclear. Here, we investigated whether RTP801 is involved in (mhtt)-induced cell death. Ectopic exon-1 mhtt elevated RTP801 mRNA and protein levels in nerve growth factor (NGF)-differentiated PC12 cells and in rat primary cortical neurons. In neuronal PC12 cells, mhtt also contributed to RTP801 protein elevation by reducing its proteasomal degradation rate, in addition to promoting RTP801 gene expression. Interestingly, silencing RTP801 expression with short hairpin RNAs (shRNAs) blocked mhtt-induced cell death in NGF-differentiated PC12 cells. However, RTP801 protein levels were not altered in the striatum of Hdh(Q7/Q111) and R6/1 mice, two HD models that display motor deficits but not neuronal death. Importantly, RTP801 protein levels were elevated in both neural telencephalic progenitors differentiated from HD patient-derived induced pluripotent stem cells and in the putamen and cerebellum of human HD postmortem brains. Taken together, our results suggest that RTP801 is a novel downstream effector of mhtt-induced toxicity and that it may be relevant to the human disease.


Asunto(s)
Proteína Huntingtina/toxicidad , Proteínas Mutantes/toxicidad , Proteínas Represoras/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Enfermedad de Huntington/patología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células PC12 , Proteolisis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/genética , Factores de Transcripción , Regulación hacia Arriba/efectos de los fármacos
19.
FEBS Lett ; 579(11): 2348-54, 2005 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-15848170

RESUMEN

A macromolecular complex containing survival of motor neurons (SMN), the spinal muscular atrophy protein, and Gemin2-7 interacts with Sm proteins and snRNAs to carry out the assembly of these components into spliceosomal small nuclear ribonucleoproteins (snRNPs). Here we report the characterization of unr-interacting protein (unrip), a GH-WD protein of unknown function, as a component of the SMN complex that interacts directly with Gemin6 and Gemin7. Unrip also binds a subset of Sm proteins, and unrip-containing SMN complexes are necessary and sufficient to mediate the assembly of spliceosomal snRNPs. These results demonstrate that unrip functions in the pathway of snRNP biogenesis and is a marker of cellular SMN complexes active in snRNP assembly.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Proteínas Portadoras/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/química , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/inmunología , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/inmunología , Proteínas Nucleares/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/inmunología , Proteínas del Complejo SMN
20.
Mol Ther Methods Clin Dev ; 2: 15030, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26417608

RESUMEN

A systematic characterization of the spatio-temporal gene expression during human neurodevelopment is essential to understand brain function in both physiological and pathological conditions. In recent years, stem cell technology has provided an in vitro tool to recapitulate human development, permitting also the generation of human models for many diseases. The correct differentiation of human pluripotent stem cell (hPSC) into specific cell types should be evaluated by comparison with specific cells/tissue profiles from the equivalent adult in vivo organ. Here, we define by a quantitative high-throughput gene expression analysis the subset of specific genes of the whole ganglionic eminence (WGE) and adult human striatum. Our results demonstrate that not only the number of specific genes is crucial but also their relative expression levels between brain areas. We next used these gene profiles to characterize the differentiation of hPSCs. Our findings demonstrate a temporal progression of gene expression during striatal differentiation of hPSCs from a WGE toward an adult striatum identity. Present results establish a gene expression profile to qualitatively and quantitatively evaluate the telencephalic hPSC-derived progenitors eventually used for transplantation and mature striatal neurons for disease modeling and drug-screening.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA