Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Res ; 191: 110167, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32926889

RESUMEN

Despite the risks that hydrocarbon contamination from pipeline leaks or train derailments impose on the health of peatlands in hydrocarbon production areas and transportation corridors, assessing the effect of such contaminations on the health and sustainability of peatlands has received little attention. This study investigates the impacts of hydrocarbons on peat microbial communities. Column experiments were conducted on non-aqueous phase liquid (NAPL) contaminated undisturbed peat core (0-35 cm) under static and fluctuating water table conditions. Water table fluctuations reduced residual NAPL saturation from 8.1-11.3% to 7.7-9.5%. Biodegradation of n-C8 and n-C12 along with oxidation of CH4 together produced high CO2 concentrations in the headspace. Clear patterns in dynamics in the microbial community structure were observed, with a more pronounced population growth. However, a significant loss of microbial richness was observed in contaminated columns. The result indicates that the phylum Proteobacteria benefited most from NAPL; however, their families differed between static and fluctuating water table conditions. This study established strong evidence that peat microbes and water table fluctuation can be an excellent tool for hydrocarbon removal and its control in peatlands.


Asunto(s)
Agua Subterránea , Microbiota , Contaminación Ambiental , Humanos , Hidrocarburos , Suelo
2.
Glob Chang Biol ; 24(1): e201-e212, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28755391

RESUMEN

Across Canada's boreal forest, linear disturbances, including cutlines such as seismic lines and roads, crisscross the landscape to facilitate resource exploration and extraction; many of these linear disturbances cross peatland ecosystems. Changes in tree canopy cover and the compression of the peat by heavy equipment alter local thermal, hydrological, and ecological conditions, likely changing carbon exchange on the disturbance, and possibly in the adjacent peatland. We measured bulk density, water table, soil temperature, plant cover, and CO2 and CH4 flux along triplicate transects crossing a winter road through a wooded fen near Peace River, Alberta, Canada. Sample plots were located 1, 5, and 10 m from the road on both sides with an additional three plots on the road. Productivity of the overstory trees, when present, was also determined. The winter road had higher bulk density, shallower water table, higher graminoid cover, and thawed earlier than the adjacent peatland. Tree productivity and CO2 flux varied between the plots, and there was no clear pattern in relation to distance from the road. The plots on the winter road acted as a greater CO2 sink and greater CH4 source compared to the adjacent peatland with plots on the winter road emitting on average (standard error) 479 (138) compared to 41 (10) mg CH4  m-2  day-1 in the adjacent peatland. Considering both gases, global warming potential increased from 70 to 250 g CO2 e m-2  year-1 in the undisturbed area to 2100 g CO2 e m-2  year-1 on the winter road. Although carbon fluxes on any given cutline through peatland will vary depending on level of compaction, line width and vegetation community shifts, the large number of linear disturbances in Canada's boreal forest and slow recovery on peatland ecosites suggest they could represent an important anthropogenic greenhouse gas source.


Asunto(s)
Carbono/fisiología , Suelo , Taiga , Árboles/fisiología , Alberta , Carbono/química , Ciclo del Carbono , Dióxido de Carbono/análisis , Gases , Calentamiento Global , Metano , Estaciones del Año , Temperatura
3.
Glob Chang Biol ; 24(12): 5751-5768, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30225998

RESUMEN

Peatlands after drainage and extraction are large sources of carbon (C) to the atmosphere. Restoration, through re-wetting and revegetation, aims to return the C sink function by re-establishing conditions similar to that of an undrained peatland. However, the time needed to re-establish C sequestration is not well constrained due to the lack of multi-year measurements. We measured over 3 years the net ecosystem exchange of CO2 (NEE), methane ( F CH 4 ), and dissolved organic carbon (DOC) at a restored post-extraction peatland (RES) in southeast Canada (restored 14 years prior to the start of the study) and compared our observations to the C balance of an intact reference peatland (REF) that has a long-term continuous flux record and is in the same climate zone. Small but significant differences in winter respiration driven by temperature were mainly responsible for differences in cumulative NEE between years. Low growing season inter-annual variability was linked to constancy of the initial spring water table position, controlled by the blocked drainage ditches and the presence of water storage structures (bunds and pools). Half-hour F CH 4 at RES was small except when Typha latifolia-invaded drainage ditches were in the tower footprint; this effect at the ecosystem level was small as ditches represent a minor fraction of RES. The restored peatland was an annual sink for CO2 (-90 ± 18 g C m-2  year-1 ), a source of CH4 (4.4 ± 0.2 g C m-2  year-1 ), and a source of DOC (6.9 ± 2.2 g C m-2  year-1 ), resulting in mean net ecosystem uptake of 78 ± 17 g C m-2  year-1 . Annual NEE at RES was most similar to wetter, more productive years at REF. Integrating structures to increase water retention, alongside re-establishing key species, have been effective at re-establishing the net C sink rate to that of an intact peatland.


Asunto(s)
Secuestro de Carbono , Suelo/química , Atmósfera , Canadá , Carbono/análisis , Dióxido de Carbono/análisis , Ecosistema , Agua Subterránea , Metano/análisis , Estaciones del Año
4.
Environ Microbiol ; 16(6): 1867-78, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24650084

RESUMEN

Recently, methanotrophic members of the phylum Verrucomicrobia have been described, but little is known about their distribution in nature. We surveyed methanotrophic bacteria in geothermal springs and acidic wetlands via pyrosequencing of 16S rRNA gene amplicons. Putative methanotrophic Verrucomicrobia were found in samples covering a broad temperature range (22.5-81.6°C), but only in acidic conditions (pH 1.8-5.0) and only in geothermal environments, not in acidic bogs or fens. Phylogenetically, three 16S rRNA gene sequence clusters of putative methanotrophic Verrucomicrobia were observed. Those detected in high-temperature geothermal samples (44.1-81.6°C) grouped with known thermoacidiphilic 'Methylacidiphilum' isolates. A second group dominated in moderate-temperature geothermal samples (22.5-40.1°C) and a representative mesophilic methanotroph from this group was isolated (strain LP2A). Genome sequencing verified that strain LP2A possessed particulate methane monooxygenase, but its 16S rRNA gene sequence identity to 'Methylacidiphilum infernorum' strain V4 was only 90.6%. A third group clustered distantly with known methanotrophic Verrucomicrobia. Using pmoA-gene targeted quantitative polymerase chain reaction, two geothermal soil profiles showed a dominance of LP2A-like pmoA sequences in the cooler surface layers and 'Methylacidiphilum'-like pmoA sequences in deeper, hotter layers. Based on these results, there appears to be a thermophilic group and a mesophilic group of methanotrophic Verrucomicrobia. However, both were detected only in acidic geothermal environments.


Asunto(s)
Manantiales de Aguas Termales/microbiología , Microbiota/genética , Verrucomicrobia/genética , Microbiología del Agua , Proteínas Bacterianas/genética , Genes Bacterianos , Concentración de Iones de Hidrógeno , Metano/metabolismo , Oxigenasas/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Verrucomicrobia/enzimología
5.
Sci Rep ; 13(1): 20588, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996571

RESUMEN

The moss layer transfer technique has been developed to restore the carbon sequestration function and typical vegetation of Sphagnum-dominated peatlands after peat extraction in North America. However, the technique does not lead to successful bryophyte establishment when applied to peatlands with a richer residual fen peat. Therefore, we evaluated an alternative method of active rewetting and passive vegetation establishment using vegetation surveys and carbon dioxide and methane (CH4) flux measurements at a post-extracted fen in southern Manitoba, Canada. After one growing season post-rewetting, wetland vegetation established and the site was a net carbon sink over the growing season. However, high abundance of Carex lasiocarpa 10 years post-treatment led to higher CH4 emissions than the reference ecosystem. Successful establishment of wetland vegetation is attributed to the area being surrounded by undisturbed fens that can provide a local source of plant propagules. Bryophyte expansion was less successful than vascular plants, likely due to episodic flooding and shading from the sedge communities. Therefore, careful management of water levels to just below the peat surface is needed if reference vegetation community recovery is the goal of restoration. Water level management will also play a key role in controlling CH4 emissions to maximize carbon sequestration potential.


Asunto(s)
Ecosistema , Suelo , Manitoba , Estaciones del Año , Humedales , Canadá , Dióxido de Carbono , Agua , Metano
6.
Sci Total Environ ; 789: 148014, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34323820

RESUMEN

Wetlands comprise a large expanse of the pre-disturbance landscape in the Athabasca Oil Sands Region (AOSR) and have become a focus of reclamation in recent years. An important aspect of wetland reclamation is understanding the biogeochemical functioning and carbon exchange, including methane (CH4) emissions, in the developing ecosystem. This study investigates the drivers of CH4 emissions over the first seven years of ecosystem development at a constructed fen in the AOSR and looks towards future CH4 emissions from this site. Specifically, the objectives were to: 1) investigate the environmental controls on CH4 emissions measured using manual static chambers between 2013 and 2019 and 2) investigate the relationship between water table depth, sulfate (SO42-) concentrations and CH4 emissions during the 2019 growing season. Methane emissions remained low throughout the majority of the measurement period; however, in later years, a small but significant increase became apparent. High levels of SO42- are likely the cause of the low CH4 emissions, despite the high-water tables and dominance of vegetation with aerenchyma such as Carex aquatilis and Typha latifolia in later years. Although low CH4 emissions may be beneficial from a climate warming perspective, the results also suggest that this constructed peatland is not functioning similarly to regional reference fens. Future climate scenarios across Western Boreal Canada could lead to higher air temperatures and changing precipitation patterns, influencing the direction of future CH4 emissions from this site. However, given the likelihood of this site maintaining extremely high SO42- concentrations over the next decade, it is expected that CH4 emissions will remain low.

7.
Sci Adv ; 7(23)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34088658

RESUMEN

Alongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada's goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.2 (41.0 to 115.1) Tg CO2e/year (95% CI) of mitigation annually in 2030 and 394.4 (173.2 to 612.4) Tg CO2e cumulatively between 2021 and 2030, with 34% available at ≤CAD 50/Mg CO2e. Avoided conversion of grassland, avoided peatland disturbance, cover crops, and improved forest management offer the largest mitigation opportunities. The mitigation identified here represents an important potential contribution to the Paris Agreement, such that NCS combined with existing mitigation plans could help Canada to meet or exceed its climate goals.

8.
Ambio ; 38(4): 194-200, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19739553

RESUMEN

The Canadian horticultural peat industry generates carbon emissions through various methods of peat extraction, processing, and land-use changes. This study provides a carbon emissions analysis comparing the traditional vacuum harvest (VH) and block-cut (BC) extraction techniques to a new acrotelm transplant (AT) method that restores natural peatland function by preserving and replacing the surface layer vegetation as part of the extraction process. The relative global warming potential for each extraction method was determined by estimating carbon dioxide (CO2) and methane exchange for each phase of peat extraction, including emissions from land-use change and machinery fuel consumption. Preliminary findings, based on 1 y of measurements, indicate that the AT technique has the lowest annual carbon emissions compared to the VH and BC methods. Projected total carbon emissions from a 75-ha peatland after 50 y of extraction using the AT technique produced a sink of approximately 3300 t CO2 equivalents (CO2-e). This represents a marked reduction in total carbon emissions estimated for the VH (19 000 t CO2-e) and BC (29 000 t CO2-e) extraction techniques. This analysis suggests that the AT method reestablishes peat accumulation and peatland carbon storage function more effectively than the VH and BC methods, which are associated with delayed restoration efforts. Consequently, the AT technique has the potential to greatly reduce the carbon footprint of the Canadian horticultural peat industry.


Asunto(s)
Agricultura , Contaminación del Aire , Dióxido de Carbono , Calentamiento Global , Suelo , Canadá , Dióxido de Carbono/metabolismo , Monitoreo del Ambiente , Humanos , Metano/metabolismo
9.
Sci Total Environ ; 651(Pt 1): 1405-1415, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30360271

RESUMEN

We investigated the impacts of resource access roads on soil enzyme activities in contrasting forested boreal peatlands (bog and fen). In August 2016, a total of 72 peat samples were collected from twelve 20 m long transects perpendicular to access roads, with a further six samples collected from undisturbed reference areas. Sampling locations represent a range in three variables associated with roads: 1) side of the road (upstream/downstream), 2) distance to a culvert (longitudinal; <2 and >20 m), and 3) distance from the road (lateral; 2, 6, and 20 m). Phenol oxidase and hydrolase (glucosidase, sulfatase, xylosidase, glucosaminidase, and phosphatase) enzyme activities were determined for each sample, in addition to water table depth, phenolic concentration, pH, and peat temperature. The average hydrolase activities in the fen were ~four times higher than in the bog. At the bog, the water table depth, phenolic concentration, pH and the activities of phenol oxidase, sulfatase, glucosidase, xylosidase and glucosaminidase were all significantly influenced by one or more road associated factors. The highest enzyme activities in the bog occurred on the downstream side of the road at plots located far from the culvert. In contrast, the flow of water in the fen was not perpendicular to the road. Consequently, no significant variations in water table depth, phenolic concentration, pH or enzyme activity were found with respect to road associated factors. Results indicate that road crossings in boreal peatlands can indirectly alter enzyme activities, likely as part of a causal chain following changes to hydrology and redox conditions. Two of six investigated enzymes had significantly higher activities in the road disturbed areas compared to undisturbed areas, suggesting ultimately that roads may enhance organic matter decomposition rates. However, adequate hydrologic connections through culverts and road construction parallel to the water flow can minimize the road-induced impacts.

10.
Nat Commun ; 10(1): 2804, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31243288

RESUMEN

Peatlands are globally significant sources of atmospheric methane (CH4). In the northern hemisphere, extensive geologic exploration activities have occurred to map petroleum deposits. In peatlands, these activities result in soil compaction and wetter conditions, changes that are likely to enhance CH4 emissions. To date, this effect has not been quantified. Here we map petroleum exploration disturbances on peatlands in Alberta, Canada, where peatlands and oil deposits are widespread. We then estimate induced CH4 emissions. By our calculations, at least 1900 km2 of peatland have been affected, increasing CH4 emissions by 4.4-5.1 kt CH4 yr-1 above undisturbed conditions. Not currently estimated in Canada's national reporting of greenhouse gas (GHG) emissions, inclusion would increase current emissions from land use, land use change and forestry by 7-8%. However, uncertainty remains large. Research further investigating effects of petroleum exploration on peatland GHG fluxes will allow appropriate consideration of these emissions in future peatland management.

11.
Sci Total Environ ; 583: 369-381, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28117165

RESUMEN

Recently, fen construction projects on surface mines in northeastern Alberta have been attempted as a reclamation strategy to reintroduce peatlands into the region where industry disturbs a substantial amount of wetland ecosystems. Knowledge of carbon cycling and greenhouse gas (GHG) dynamics, including methane (CH4), is one way to understand the biogeochemical function of newly constructed fen ecosystems. In this study we monitored CH4 emissions and CH4 pore water concentration, as well as ecological and soil chemistry controls on CH4 emissions and pore water concentration, from a constructed fen. The same variables were also monitored at two natural reference fens that had similar vascular vegetation to the constructed fen. Methane emissions were lower at the constructed fen compared to the reference poor fen, but similar to the reference saline fen. However, CH4 concentration in pore water at 0.2m and 0.7m depth was lower at the constructed fen than either of the natural reference sites. The supply rate of sulfur (all mobile forms) was the most dominant control on CH4 emission and CH4 pore water concentration. While low CH4 emissions may be beneficial for constructed fens from a GHG perspective, this condition indicates that peat and carbon accumulation at these reclaimed sites may ensue slowly. Therefore, a clear statement of goals is required to determine how CH4 dynamics from constructed fen ecosystems relate to the reclamation outcome.

12.
Sci Total Environ ; 557-558: 579-89, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27037879

RESUMEN

In the Athabasca oil sands region near Fort McMurray, Alberta, Canada, peatlands are disturbed extensively in order to recover bitumen below the surface. Hence, following oil sands mining, landscape reclamation is a part of the mine closure process in order to return functioning ecosystems, including peatlands, to the region. This study was conducted at a pilot fen reclamation project and three other diverse natural (poor, rich and saline) fens in the oil sands region during the growing seasons of 2013 and 2014, the first and second year post-construction. Ecosystem functioning of the constructed fen (CF) was evaluated with reference to natural fens based on pore water dissolved organic carbon (DOC) concentration and chemistry. Significant variation of DOC concentration among the reference fens was observed, varying from an average of 42.0mg/L at the rich fen (RF) to 70.8mg/L at the saline fen (SF). Dissolved organic carbon concentration at CF was significantly lower than at all reference fens, but increased significantly over the first two years. Seasonal variation of DOC concentration was also observed in each site with concentration increasing over the growing season. At CF, DOC was comprised of larger, more humic and complex aromatic compounds than reference fens in the first year post-construction based on its spectrophotometric properties; however, these differences were reduced in the second year. Initial DOC concentration and chemistry at CF was indicative of the source being largely the peat placed during fen construction. Changes in chemistry and increasing concentration of DOC in the second growing season likely resulted from increasing inputs from plants established on site. These results suggest that DOC concentration is likely to increase in future at CF as vascular plant productivity increases and in response to salinity sourced from tailing sand used to construct the catchment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA