Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(1): 016401, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31976705

RESUMEN

The crossover from fluctuating atomic constituents to a collective state as one lowers temperature or energy is at the heart of the dynamical mean-field theory description of the solid state. We demonstrate that the numerical renormalization group is a viable tool to monitor this crossover in a real-materials setting. The renormalization group flow from high to arbitrarily small energy scales clearly reveals the emergence of the Fermi-liquid state of Sr_{2}RuO_{4}. We find a two-stage screening process, where orbital fluctuations are screened at much higher energies than spin fluctuations, and Fermi-liquid behavior, concomitant with spin coherence, below a temperature of 25 K. By computing real-frequency correlation functions, we directly observe this spin-orbital scale separation and show that the van Hove singularity drives strong orbital differentiation. We extract quasiparticle interaction parameters from the low-energy spectrum and find an effective attraction in the spin-triplet sector.

2.
J Chem Phys ; 152(13): 134107, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268748

RESUMEN

Quantum many-body systems in thermal equilibrium can be described by the imaginary time Green's function formalism. However, the treatment of large molecular or solid ab initio problems with a fully realistic Hamiltonian in large basis sets is hampered by the storage of the Green's function and the precision of the solution of the Dyson equation. We present a Legendre-spectral algorithm for solving the Dyson equation that addresses both of these issues. By formulating the algorithm in Legendre coefficient space, our method inherits the known faster-than-exponential convergence of the Green's function's Legendre series expansion. In this basis, the fast recursive method for Legendre polynomial convolution enables us to develop a Dyson equation solver with quadratic scaling. We present benchmarks of the algorithm by computing the dissociation energy of the helium dimer He2 within dressed second-order perturbation theory. For this system, the application of the Legendre spectral algorithm allows us to achieve an energy accuracy of 10-9Eh with only a few hundred expansion coefficients.

3.
Phys Rev Lett ; 118(24): 246402, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28665669

RESUMEN

We study the dynamics of screening in photodoped Mott insulators with long-ranged interactions using a nonequilibrium implementation of the GW plus extended dynamical mean-field theory formalism. Our study demonstrates that the complex interplay of the injected carriers with bosonic degrees of freedom (charge fluctuations) can result in long-lived transient states with properties that are distinctly different from those of thermal equilibrium states. Systems with strong nonlocal interactions are found to exhibit a self-sustained population inversion of the doublons and holes. This population inversion leads to low-energy antiscreening which can be detected in time-resolved electron-energy-loss spectra.

5.
Phys Rev Lett ; 113(3): 036402, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-25083657

RESUMEN

We argue that, because of quantum entanglement, the local physics of strongly correlated materials at zero temperature is described in a very good approximation by a simple generalized Gibbs distribution, which depends on a relatively small number of local quantum thermodynamical potentials. We demonstrate that our statement is exact in certain limits and present numerical calculations of the iron compounds FeSe and FeTe and of the elemental cerium by employing the Gutzwiller approximation that strongly support our theory in general.

6.
Nat Commun ; 9(1): 4581, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389918

RESUMEN

Photo-induced hidden phases are often observed in materials with intertwined orders. Understanding the formation of these non-thermal phases is challenging and requires a resolution of the cooperative interplay between different orders on the ultra-short timescale. In this work, we demonstrate that non-equilibrium photo-excitations can induce a state with spin-orbital orders entirely different from the equilibrium state in the three-quarter-filled two-band Hubbard model. We identify a general mechanism governing the transition to the hidden state, which relies on a non-thermal partial melting of the intertwined orders mediated by photoinduced charge excitations in the presence of strong spin-orbital exchange interactions. Our study theoretically confirms the crucial role played by orbital degrees of freedom in the light-induced dynamics of strongly correlated materials and it shows that the switching to hidden states can be controlled already on the fs timescale of the electron dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA