Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39337403

RESUMEN

In allergen-specific immunotherapy, adjuvants are explored for modulating allergen-specific Th2 immune responses to re-establish clinical tolerance. One promising class of adjuvants are ß-glucans, which are naturally derived sugar structures and components of dietary fibers that activate C-type lectin (CLR)-, "Toll"-like receptors (TLRs), and complement receptors (CRs). We characterized the immune-modulating properties of six commercially available ß-glucans, using immunological (receptor activation, cytokine secretion, and T cell modulating potential) as well as metabolic parameters (metabolic state) in mouse bone marrow-derived myeloid dendritic cells (mDCs). All tested ß-glucans activated the CLR Dectin-1a, whereas TLR2 was predominantly activated by Zymosan. Further, the tested ß-glucans differentially induced mDC-derived cytokine secretion and activation of mDC metabolism. Subsequent analyses focusing on Zymosan, Zymosan depleted, ß-1,3 glucan, and ß-1,3 1,6 glucan revealed robust mDC activation with the upregulation of the cluster of differentiation 40 (CD40), CD80, CD86, and MHCII to different extents. ß-glucan-induced cytokine secretion was shown to be, in part, dependent on the activation of the intracellular Dectin-1 adapter molecule Syk. In co-cultures of mDCs with Th2-biased CD4+ T cells isolated from birch allergen Bet v 1 plus aluminum hydroxide (Alum)-sensitized mice, these four ß-glucans suppressed allergen-induced IL-5 secretion, while only Zymosan and ß-1,3 glucan significantly suppressed allergen-induced interferon gamma (IFNγ) secretion, suggesting the tested ß-glucans to have distinct effects on mDC T cell priming capacity. Our experiments indicate that ß-glucans have distinct immune-modulating properties, making them interesting adjuvants for future allergy treatment.


Asunto(s)
Citocinas , Células Dendríticas , Lectinas Tipo C , beta-Glucanos , Animales , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , beta-Glucanos/farmacología , beta-Glucanos/química , Ratones , Lectinas Tipo C/metabolismo , Citocinas/metabolismo , Adyuvantes Inmunológicos/farmacología , Zimosan/farmacología , Células Mieloides/efectos de los fármacos , Células Mieloides/inmunología , Células Mieloides/metabolismo , Receptor Toll-Like 2/metabolismo , Ratones Endogámicos C57BL , Quinasa Syk/metabolismo
2.
Allergy ; 77(2): 633-642, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34241919

RESUMEN

BACKGROUND: The aim of the BSP090 project is the establishment of European Pharmacopoeia Chemical Reference Substances (CRSs) in combination with corresponding standard ELISA methods for quantification of major allergens in allergen products. Here, we present data of a Phl p 5-specific sandwich ELISA that proved suitable for the quantification of Phl p 5, one of the major Timothy grass (Phleum pratense) pollen allergens. METHODS: A Phl p 5-specific ELISA system was assessed with respect to accuracy, precision, inter-assay (within laboratory) and inter-laboratory variations, in a ring trial including 14 laboratories in Europe and the USA. Model samples containing recombinant Phl p 5a CRS as well as native grass pollen extracts were analysed. Each participant was instructed to perform at least one preliminary assay to familiarise with the protocol, followed by three independent assays. RESULTS: The candidate standard ELISA proved suitable to quantify recombinant and native Phl p 5 with satisfactory precision (93% of results within ±30% acceptance range). Inter-assay variation (max. GCV 24%) and especially inter-laboratory variation (max. GCV 13%) showed conclusive results. When assessing accuracy by means of recovery of recombinant spikes from a grass pollen extract matrix, similarly satisfactory spike recovery results were observed for the two spikes with higher concentrations (all within ±30% acceptance range), whereas recovery of the lowest concentration spike was slightly poorer with mean results of six laboratories exceeding acceptance range. CONCLUSIONS: Based on the collaborative study results, the assessed Phl p 5-specific immunoassay is appropriate to be proposed as European Pharmacopoeia standard method.


Asunto(s)
Alérgenos , Polen , Alérgenos/química , Ensayo de Inmunoadsorción Enzimática , Humanos , Phleum/química , Proteínas de Plantas/química , Poaceae , Estándares de Referencia
5.
Anal Bioanal Chem ; 407(6): 1673-83, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25572690

RESUMEN

Birch (Betula) pollen is a major cause of allergy in northern and central Europe. The allergenic potency of products for diagnosis and therapy of birch pollen allergy is adjusted nearly exclusively to the major birch pollen allergen Bet v 1. Although every fifth patient is additionally sensitized to Bet v 4, both content and variability of this minor allergen in birch allergen products remain unclear due to a lack of simple and cost-effective quantitative methods. This study aimed to develop and in-house validate the first Bet v 4-specific sandwich enzyme-linked immunosorbent assay (ELISA). Based on a murine monoclonal antibody in combination with a polyclonal rabbit antiserum, the ELISA proved to be highly sensitive, with a lower limit of quantification of 30 pg/ml Bet v 4. After confirmation of satisfactory accuracy, reproducibility, and robustness, the ELISA was utilized to quantify Bet v 4 in 30 authorized birch allergen products. The allergen was detected in all samples tested, ranging from 0.2 to 4.4 µg/ml. No significant correlation of Bet v 4 was found with the respective amount of Bet v 1. In contrast to Bet v 1, also no correlation of Bet v 4 with total protein content or total allergenic activity could be observed. Thus, it seems presently unfeasible to base birch allergen product standardization additionally on Bet v 4. In light of these results, the continuous monitoring of Bet v 4 in birch allergen products with the presented ELISA will provide a basis for the understanding of the clinical relevance of minor allergens.


Asunto(s)
Antígenos de Plantas/análisis , Proteínas de Unión al Calcio/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas de Plantas/análisis , Polen/química , Animales , Western Blotting , Humanos , Límite de Detección , Reproducibilidad de los Resultados
6.
Front Immunol ; 10: 2337, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649664

RESUMEN

Innate lymphoid cells (ILCs) are tissue resident cells with organ-specific properties. Here, we show that the central nervous system (CNS) encompasses ILCs. In particular, CD3-NK1.1+ cells present in the murine CNS comprise natural killer (NK) cells, ILC1s, intermediate ILC1s (intILC1s) and ex-ILC3s. We investigated the properties of CNS-ILC1s in comparison with CNS-NK cells during steady state and experimental autoimmune encephalomyelitis (EAE). ILC1s characteristically express CXCR3, CXCR6, DNAM-1, TRAIL, and CD200R and display heightened TNF-α production upon stimulation. In addition, ILC1s express perforin and are able to degranulate, although in a lesser extent than NK cells. Within the CNS compartments, ILC1s are enriched in the choroid plexus where very few NK cells are present, and also reside in the brain parenchyma and meninges. During EAE, ILC1s maintain stable IFN-γ and TNF-α levels while in NK cells the production of these cytokines increases as EAE progresses. Moreover, the amount of ILC1s and intILC1s increase in the parenchyma during EAE, but in contrast to NK cells, they show no signs of local proliferation. The upregulation in the inflamed brain of chemokines involved in ILC1 migration, such as CXCL9, CXCL10, and CXCL16 may lead to a recruitment of ILC1s from meninges or choroid plexus into the brain parenchyma. In sum, CNS-ILC1 phenotype, distribution and moderate inflammatory response during EAE suggest that they may act as gatekeepers involved in the control of neuroinflammation.


Asunto(s)
Encéfalo/inmunología , Movimiento Celular/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Células Asesinas Naturales/inmunología , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/inmunología , Encéfalo/patología , Movimiento Celular/genética , Citocinas/genética , Citocinas/inmunología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Células Asesinas Naturales/patología , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA