Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(9): 1430-1442, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34788807

RESUMEN

Rahman syndrome (RMNS) is a rare genetic disorder characterized by mild to severe intellectual disability, hypotonia, anxiety, autism spectrum disorder, vision problems, bone abnormalities and dysmorphic facies. RMNS is caused by de novo heterozygous mutations in the histone linker gene H1-4; however, mechanisms underlying impaired neurodevelopment in RMNS are not understood. All reported mutations associated with RMNS in H1-4 are small insertions or deletions that create a shared frameshift, resulting in a H1.4 protein that is both truncated and possessing an abnormal C-terminus frameshifted tail (H1.4 CFT). To expand understanding of mutations and phenotypes associated with mutant H1-4, we identified new variants at both the C- and N-terminus of H1.4. The clinical features of mutations identified at the C-terminus are consistent with other reports and strengthen the support of pathogenicity of H1.4 CFT. To understand how H1.4 CFT may disrupt brain function, we exogenously expressed wild-type or H1.4 CFT protein in rat hippocampal neurons and assessed neuronal structure and function. Genome-wide transcriptome analysis revealed ~ 400 genes altered in the presence of H1.4 CFT. Neuronal genes downregulated by H1.4 CFT were enriched for functional categories involved in synaptic communication and neuropeptide signaling. Neurons expressing H1.4 CFT also showed reduced neuronal activity on multielectrode arrays. These data are the first to characterize the transcriptional and functional consequence of H1.4 CFT in neurons. Our data provide insight into causes of neurodevelopmental impairments associated with frameshift mutations in the C-terminus of H1.4 and highlight the need for future studies on the function of histone H1.4 in neurons.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Trastorno del Espectro Autista/genética , Mutación del Sistema de Lectura/genética , Histonas/genética , Histonas/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Neuronas/metabolismo , Ratas
2.
Genet Med ; 26(6): 101102, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38431799

RESUMEN

PURPOSE: Genomic medicine can end diagnostic odysseys for patients with complex phenotypes; however, limitations in insurance coverage and other systemic barriers preclude individuals from accessing comprehensive genetics evaluation and testing. METHODS: The Texome Project is a 4-year study that reduces barriers to genomic testing for individuals from underserved and underrepresented populations. Participants with undiagnosed, rare diseases who have financial barriers to obtaining exome sequencing (ES) clinically are enrolled in the Texome Project. RESULTS: We highlight the Texome Project process and describe the outcomes of the first 60 ES results for study participants. Participants received a genetic evaluation, ES, and return of results at no cost. We summarize the psychosocial or medical implications of these genetic diagnoses. Thus far, ES provided molecular diagnoses for 18 out of 60 (30%) of Texome participants. Plus, in 11 out of 60 (18%) participants, a partial or probable diagnosis was identified. Overall, 5 participants had a change in medical management. CONCLUSION: To date, the Texome Project has recruited a racially, ethnically, and socioeconomically diverse cohort. The diagnostic rate and medical impact in this cohort support the need for expanded access to genetic testing and services. The Texome Project will continue reducing barriers to genomic care throughout the future study years.


Asunto(s)
Secuenciación del Exoma , Pruebas Genéticas , Poblaciones Vulnerables , Humanos , Femenino , Masculino , Pruebas Genéticas/métodos , Adulto , Persona de Mediana Edad , Área sin Atención Médica , Exoma/genética , Accesibilidad a los Servicios de Salud , Adolescente , Genómica/métodos , Adulto Joven , Anciano
3.
Am J Med Genet A ; 194(1): 77-81, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37746810

RESUMEN

Thrombocytopenia can be inherited or acquired from a variety of causes. While hereditary causes of thrombocytopenia are rare, several genes have been associated with the condition. In this report, we describe an 18-year-old man and his mother, both of whom have congenital thrombocytopenia. Exome sequencing in the man revealed a 1006 kb maternally inherited deletion in the 10p12.1 region (arr[GRCh37] 10p12.1(27378928_28384564)x1) of uncertain clinical significance. This deletion in the THC2 locus includes genes ANKRD26, known to be involved in normal megakaryocyte differentiation, and MASTL, which some studies suggest is linked to autosomal dominant thrombocytopenia. In the family presented here, the deletion segregated with the congenital thrombocytopenia phenotype, suggesting that haploinsufficiency of one or both genes may be the cause. To our knowledge, this is the first report of a deletion of the THC2 locus associated with thrombocytopenia. Future functional studies of deletions of the THC2 locus may elucidate the mechanism for this phenotype observed clinically.


Asunto(s)
Trastornos de los Cromosomas , Trombocitopenia , Humanos , Adolescente , Trombocitopenia/genética , Trombocitopenia/congénito , Trastornos de los Cromosomas/genética , Rotura Cromosómica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética
4.
Am J Hum Genet ; 107(2): 352-363, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32693025

RESUMEN

MORC2 encodes an ATPase that plays a role in chromatin remodeling, DNA repair, and transcriptional regulation. Heterozygous variants in MORC2 have been reported in individuals with autosomal-dominant Charcot-Marie-Tooth disease type 2Z and spinal muscular atrophy, and the onset of symptoms ranges from infancy to the second decade of life. Here, we present a cohort of 20 individuals referred for exome sequencing who harbor pathogenic variants in the ATPase module of MORC2. Individuals presented with a similar phenotype consisting of developmental delay, intellectual disability, growth retardation, microcephaly, and variable craniofacial dysmorphism. Weakness, hyporeflexia, and electrophysiologic abnormalities suggestive of neuropathy were frequently observed but were not the predominant feature. Five of 18 individuals for whom brain imaging was available had lesions reminiscent of those observed in Leigh syndrome, and five of six individuals who had dilated eye exams had retinal pigmentary abnormalities. Functional assays revealed that these MORC2 variants result in hyperactivation of epigenetic silencing by the HUSH complex, supporting their pathogenicity. The described set of morphological, growth, developmental, and neurological findings and medical concerns expands the spectrum of genetic disorders resulting from pathogenic variants in MORC2.


Asunto(s)
Adenosina Trifosfatasas/genética , Anomalías Craneofaciales/genética , Trastornos del Crecimiento/genética , Mutación/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Enfermedades Genéticas Congénitas/genética , Heterocigoto , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Persona de Mediana Edad , Fenotipo , Adulto Joven
5.
Genet Med ; 25(5): 100818, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36852743

RESUMEN

PURPOSE: Cascade testing, the process of testing a proband's at-risk relatives, is integral to realizing the full value of genomic sequencing. However, there is little empirical evidence on the uptake of cascade testing after a positive exome sequencing (ES) result in a population of probands with diverse clinical indications. METHODS: We retrospectively reviewed administrative data from 2 US clinical laboratories that perform ES. For each proband with a positive ES result, we used linked family data to describe the frequency of relatives' cascade testing performed at the same laboratory, variant detection yield of cascade tests, and characteristics of probands and relatives categorized on the basis of cascade testing completion. RESULTS: Among the 3723 positive ES results across both laboratories, 426 relatives of 282 probands completed cascade testing (uptake = 7.6%). An average of 1.5 relatives (SD = 0.9) were tested per proband. Of the 426 relatives tested, 200 had a variant of interest detected (variant detection yield = 47.0%). CONCLUSION: In our real-world data analysis, a small proportion of probands with a positive ES result subsequently had relatives complete cascade testing at the same laboratory. However, approximately half of the tested relatives received a clinically significant result that could have implications for clinical management or reproductive planning. Additional research on ways to increase cascade testing uptake is warranted.


Asunto(s)
Pruebas Genéticas , Laboratorios , Humanos , Pruebas Genéticas/métodos , Estudios Retrospectivos , Secuenciación del Exoma , Familia
6.
Genet Med ; 25(3): 100350, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36547467

RESUMEN

PURPOSE: Little is known about how Medicaid coverage policies affect access to genetic tests for pediatric patients. Building upon and extending a previous analysis of prior authorization requests (PARs), we describe expected coverage of genetic tests submitted to Texas Medicaid and the PAR and diagnostic outcomes of those tests. METHODS: We retrospectively reviewed genetic tests ordered at 3 pediatric outpatient genetics clinics in Texas. We compared Current Procedural Terminology (CPT) codes with the Texas Medicaid fee-for-service schedule (FFSS) to determine whether tests were expected to be covered by Medicaid. We assessed completion and diagnostic yield of commonly ordered tests. RESULTS: Among the 3388 total tests submitted to Texas Medicaid, 68.9% (n = 2336) used at least 1 CPT code that was not on the FFSS and 80.7% (n = 2735) received a favorable PAR outcome. Of the tests with a CPT code not on the FFSS, 60.0% (n = 1400) received a favorable PAR outcome and were completed and 20.5% (n = 287) were diagnostic. The diagnostic yield of all tests with a favorable PAR outcome that were completed was 18.7% (n = 380/2029). CONCLUSION: Most PARs submitted to Texas Medicaid used a CPT code for which reimbursement from Texas Medicaid was not guaranteed. The frequency with which clinically indicated genetic tests were not listed on the Texas Medicaid FFSS suggests misalignment between genetic testing needs and coverage policies. Our findings can inform updates to Medicaid policies to reduce coverage uncertainty and expand access to genetic tests with high diagnostic utility.


Asunto(s)
Medicaid , Pacientes Ambulatorios , Humanos , Niño , Estados Unidos , Texas , Estudios Retrospectivos , Pruebas Genéticas
7.
Genet Med ; 25(10): 100916, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37334785

RESUMEN

PURPOSE: Genome sequencing (GS) may shorten the diagnostic odyssey for patients, but clinical experience with this assay in nonresearch settings remains limited. Texas Children's Hospital began offering GS as a clinical test to admitted patients in 2020, providing an opportunity to study GS utilization, possibilities for test optimization, and testing outcomes. METHODS: We retrospectively reviewed GS orders for admitted patients for a nearly 3-year period from March 2020 through December 2022. We gathered anonymized clinical data from the electronic health record to answer the study questions. RESULTS: The diagnostic yield over 97 admitted patients was 35%. The majority of GS clinical indications were neurologic or metabolic (61%) and most patients were in intensive care (58%). Tests were often characterized as candidates for intervention/improvement (56%), frequently because of redundancy with prior testing. Patients receiving GS without prior exome sequencing (ES) had higher diagnostic rates (45%) than the cohort as a whole. In 2 cases, GS revealed a molecular diagnosis that is unlikely to be detected by ES. CONCLUSION: The performance of GS in clinical settings likely justifies its use as a first-line diagnostic test, but the incremental benefit for patients with prior ES may be limited.


Asunto(s)
Pruebas Genéticas , Hospitales , Humanos , Niño , Estudios Retrospectivos , Secuenciación del Exoma , Mapeo Cromosómico
8.
Am J Med Genet A ; 191(6): 1576-1580, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36843287

RESUMEN

TBL1XR1, which encodes transducing ß-like 1 X-linked receptor 1, is implicated in both Pierpont syndrome and intellectual developmental disorder, autosomal dominant-41 (MRD-41, OMIM #616944). While both conditions are autosomal dominant, variants associated with Pierpont syndrome are believed to behave in a dominant negative fashion, whereas those causing MRD-41 result in haploinsufficiency. Here, we present a patient with a de novo novel variant in TBL1XR1 (c.977G > A,p.S326N) identified by trio exome sequencing. Though a different variant at this same residue has previously been associated with MRD-41, our patient's presentation is suggestive of Pierpont syndrome. The patient's clinical phenotype, which includes short stature, developmental delay, dysmorphic craniofacial features, and plantar fat pads, more closely resembles that of known patients with Pierpont syndrome than MRD-41. Furthermore, this missense variant is directly adjacent to one previously associated with Pierpont syndrome and exists in the same region as all variants associated with Pierpont, on the inner surface of a WD40 ring. We propose this variant is a newly identified cause of Pierpont syndrome.


Asunto(s)
Discapacidades del Desarrollo , Discapacidad Intelectual , Humanos , Niño , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Facies , Discapacidad Intelectual/genética , Fenotipo , Proteínas Represoras/genética , Receptores Citoplasmáticos y Nucleares/genética
9.
Am J Med Genet A ; 191(5): 1366-1372, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36751706

RESUMEN

TMEM70 deficiency causing mitochondrial complex V deficiency, nuclear type 2 (MIM: 614052) is the most common nuclear encoded defect affecting ATP synthase and has been well described in the literature as being characterized by neonatal or infantile onset of poor feeding, hypotonia, lethargy, respiratory compromise, heart failure, lactic acidosis, hyperammonemia, and 3-methylglutaconic aciduria progressing to a phenotype of developmental delay, failure to thrive, short stature, nonprogressive cardiomyopathy, microcephaly, facial dysmorphisms, hypospadias, persistent pulmonary hypertension of the newborn, and Wolff-Parkinson-White syndrome, as well as metabolic crises followed by developmental regression. The patient with TMEM70 deficiency herein reported has the unique presentation of aortic root dilatation, differing facial dysmorphisms, and no history of neonatal metabolic decompensation or developmental delay, as well as a plasma metabolomics signature, including elevated 3-methylglutaconic acid, 3-methylglutarylcarnitine, alanine, and lactate, in addition to the commonly described increased 3-methylglutaconic acid on urine organic acid analysis that helped aid in the diagnostic interpretation of variants of uncertain significance in TMEM70.


Asunto(s)
Aorta Torácica , Cardiomiopatías , Masculino , Humanos , Dilatación , Fenotipo , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética
10.
J Genet Couns ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563805

RESUMEN

For genetic counselors to effectively meet the needs of an ever-diversifying multicultural patient population, it is vital that their genetic counseling programs (GCPs) equip future genetic counselors to recognize the impact of a patient's ethnocultural background on clinical interactions (Towards a culturally competent system of care: A monograph on effective services for minority children who are severely emotionally disturbed (p. 28). CASSP Technical Assistance Center, Georgetown University Child Development Center, 1989). Concerns about genetic counseling cultural competency training (CCT) including content and delivery have been brought up by GCP students who identify as racial and ethnic minorities (Journal of Genetic Counseling, 29, 303-314). Though GCPs must meet the Accreditation Council of Genetic Counselors' (ACGC) accreditation criteria, there is a gap in knowledge regarding the focus, type, and methods of delivery that GCPs have chosen to incorporate into their CCT, as ACGC does not dictate the exact focus, delivery, or format of training curricula. This quantitative study aimed to (1) characterize the current focus, type, and delivery of ethnocultural competency training in GCPs as perceived by second-year genetic counseling students and recent graduates and (2) highlight their perception of its impact on their levels of preparedness and comfort when interacting with ethnoculturally diverse patients. One hundred and one survey responses were analyzed using descriptive statistics, chi-square analyses, two-sample Wilcoxon rank-sum, and Fisher's exact tests. The results reveal significant variability in the format, type, and delivery of CCT provided by GCPs. Participants perceive that CCT focusing on specific traditions, medical considerations, and systemic healthcare disparities (taught to 74%, 61%, and 94% of students, respectively) related to ethnoculturally diverse patients was more likely to increase their self-reported levels of preparedness and comfort for clinical interactions than training focused on racial or ethnic stereotypes and generalizations (taught to 88% of students). Although 94% of participants perceived their CCT as helpful, 61% reported they received an insufficient amount. In light of these results, we provide suggestions for the improvement of ethnocultural CCT and highlight future opportunities for more intentional and fruitful CCT in GCPs.

11.
Am J Hum Genet ; 105(3): 493-508, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447100

RESUMEN

Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging.


Asunto(s)
Senescencia Celular/fisiología , Histonas/fisiología , Aneuploidia , Nucléolo Celular/metabolismo , Niño , Cromatina/metabolismo , Metilación de ADN , Femenino , Histonas/química , Humanos , Lactante , Masculino , Persona de Mediana Edad
12.
Genet Med ; 24(2): 364-373, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34906496

RESUMEN

PURPOSE: BRG1/BRM-associated factor (BAF) complex is a chromatin remodeling complex that plays a critical role in gene regulation. Defects in the genes encoding BAF subunits lead to BAFopathies, a group of neurodevelopmental disorders with extensive locus and phenotypic heterogeneity. METHODS: We retrospectively analyzed data from 16,243 patients referred for clinical exome sequencing (ES) with a focus on the BAF complex. We applied a genotype-first approach, combining predicted genic constraints to propose candidate BAFopathy genes. RESULTS: We identified 127 patients carrying pathogenic variants, likely pathogenic variants, or de novo variants of unknown clinical significance in 11 known BAFopathy genes. Those include 34 patients molecularly diagnosed using ES reanalysis with new gene-disease evidence (n = 21) or variant reclassifications in known BAFopathy genes (n = 13). We also identified de novo or predicted loss-of-function variants in 4 candidate BAFopathy genes, including ACTL6A, BICRA (implicated in Coffin-Siris syndrome during this study), PBRM1, and SMARCC1. CONCLUSION: We report the mutational spectrum of BAFopathies in an ES cohort. A genotype-driven and pathway-based reanalysis of ES data identified new evidence for candidate genes involved in BAFopathies. Further mechanistic and phenotypic characterization of additional patients are warranted to confirm their roles in human disease and to delineate their associated phenotypic spectrums.


Asunto(s)
Anomalías Múltiples , Deformidades Congénitas de la Mano , Micrognatismo , Anomalías Múltiples/genética , Actinas/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Exoma/genética , Deformidades Congénitas de la Mano/genética , Humanos , Micrognatismo/genética , Estudios Retrospectivos
13.
Genet Med ; 24(9): 1952-1966, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35916866

RESUMEN

PURPOSE: ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. METHODS: An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. RESULTS: ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the DrosophilaZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. CONCLUSION: We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Encéfalo/metabolismo , Regulación de la Expresión Génica , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Dominios Proteicos , Secuenciación del Exoma
14.
Genet Med ; 23(5): 950-955, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33473204

RESUMEN

PURPOSE: Genetic testing is an important diagnostic tool in pediatric genetics clinics, yet many patients face barriers to testing. We describe the outcomes of prior authorization requests (PARs) for genetic tests, one indicator of patient access to clinically recommended testing, in pediatric genetics clinics. METHODS: We retrospectively reviewed PARs for genetic tests (n = 4,535) recommended for patients <18 years of age (n = 2,798) by pediatric medical geneticists at two children's hospitals in Texas, 2017-2018. We described PAR outcomes, accompanying diagnostic codes, and diagnostic yield. RESULTS: The majority (79.9%) of PARs received a favorable outcome. PARs submitted to public payers were more likely to receive a favorable outcome compared with private payers (85.5% vs. 70.3%, respectively; p < 0.001). No diagnostic codes were associated with higher likelihood of PAR approval for exome sequencing. Among the 2,685 tests approved and completed, 522 (19.4%) resulted in a diagnosis. CONCLUSION: Though there was a high PAR approval rate, our findings suggest that insurance coverage remains one barrier to genetic testing. When completed, genetic testing had a high yield in our sample. Further evidence of clinical utility and development of clinical practice guidelines may inform payer medical policy development and improve access to testing in the future.


Asunto(s)
Pacientes Ambulatorios , Autorización Previa , Niño , Pruebas Genéticas , Humanos , Estudios Retrospectivos , Texas
15.
Genet Med ; 23(7): 1234-1245, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33824499

RESUMEN

PURPOSE: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency. METHODS: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24. RESULTS: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease. CONCLUSION: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities.


Asunto(s)
Haploinsuficiencia , Discapacidad Intelectual , Animales , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/genética , Ratones , Hipotonía Muscular , Mutación Missense , Fenotipo
16.
Clin Genet ; 100(2): 227-233, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33963760

RESUMEN

PPP3CA encodes the catalytic subunit of calcineurin, a calcium-calmodulin-regulated serine-threonine phosphatase. Loss-of-function (LoF) variants in the catalytic domain have been associated with epilepsy, while gain-of-function (GoF) variants in the auto-inhibitory domain cause multiple congenital abnormalities. We herein report five new patients with de novo PPP3CA variants. Interestingly, the two frameshift variants in this study and the six truncating variants reported previously are all located within a 26-amino acid region in the regulatory domain (RD). Patients with a truncating variant had more severe earlier onset seizures compared to patients with a LoF missense variant, while autism spectrum disorder was a more frequent feature in the latter. Expression studies of a truncating variant showed apparent RNA expression from the mutant allele, but no detectable mutant protein. Our data suggest that PPP3CA truncating variants clustered in the RD, causing more severe early-onset refractory epilepsy and representing a type of variants distinct from LoF or GoF missense variants.


Asunto(s)
Calcineurina/genética , Epilepsia/genética , Mutación , Adolescente , Calcineurina/metabolismo , Niño , Preescolar , Epilepsia Refractaria/etiología , Epilepsia Refractaria/genética , Epilepsia/etiología , Femenino , Expresión Génica , Humanos , Masculino , Análisis de Secuencia de ARN
17.
Hum Mutat ; 41(5): 921-925, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31999386

RESUMEN

The bromodomain adjacent to zinc finger 2B gene (BAZ2B) encodes a protein involved in chromatin remodeling. Loss of BAZ2B function has been postulated to cause neurodevelopmental disorders. To determine whether BAZ2B deficiency is likely to contribute to the pathogenesis of these disorders, we performed bioinformatics analyses that demonstrated a high level of functional convergence during fetal cortical development between BAZ2B and genes known to cause autism spectrum disorder (ASD) and neurodevelopmental disorder. We also found an excess of de novo BAZ2B loss-of-function variants in exome sequencing data from previously published cohorts of individuals with neurodevelopmental disorders. We subsequently identified seven additional individuals with heterozygous deletions, stop-gain, or de novo missense variants affecting BAZ2B. All of these individuals have developmental delay (DD), intellectual disability (ID), and/or ASD. Taken together, our findings suggest that haploinsufficiency of BAZ2B causes a neurodevelopmental disorder, whose cardinal features include DD, ID, and ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Factores Generales de Transcripción/genética , Alelos , Sustitución de Aminoácidos , Trastorno del Espectro Autista/diagnóstico , Expresión Génica , Estudios de Asociación Genética , Genotipo , Humanos , Discapacidad Intelectual/diagnóstico , Trastornos del Neurodesarrollo/diagnóstico , Eliminación de Secuencia
18.
Am J Hum Genet ; 101(4): 503-515, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28942966

RESUMEN

Bromodomain PHD finger transcription factor (BPTF) is the largest subunit of nucleosome remodeling factor (NURF), a member of the ISWI chromatin-remodeling complex. However, the clinical consequences of disruption of this complex remain largely uncharacterized. BPTF is required for anterior-posterior axis formation of the mouse embryo and was shown to promote posterior neuroectodermal fate by enhancing Smad2-activated wnt8 expression in zebrafish. Here, we report eight loss-of-function and two missense variants (eight de novo and two of unknown origin) in BPTF on 17q24.2. The BPTF variants were found in unrelated individuals aged between 2.1 and 13 years, who manifest variable degrees of developmental delay/intellectual disability (10/10), speech delay (10/10), postnatal microcephaly (7/9), and dysmorphic features (9/10). Using CRISPR-Cas9 genome editing of bptf in zebrafish to induce a loss of gene function, we observed a significant reduction in head size of F0 mutants compared to control larvae. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and phospho-histone H3 (PH3) staining to assess apoptosis and cell proliferation, respectively, showed a significant increase in cell death in F0 mutants compared to controls. Additionally, we observed a substantial increase of the ceratohyal angle of the craniofacial skeleton in bptf F0 mutants, indicating abnormal craniofacial patterning. Taken together, our data demonstrate the pathogenic role of BPTF haploinsufficiency in syndromic neurodevelopmental anomalies and extend the clinical spectrum of human disorders caused by ablation of chromatin remodeling complexes.


Asunto(s)
Anomalías Múltiples/genética , Antígenos Nucleares/genética , Anomalías Craneofaciales/genética , Regulación del Desarrollo de la Expresión Génica , Haploinsuficiencia/genética , Trastornos del Desarrollo del Lenguaje/genética , Microcefalia/genética , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Anomalías Múltiples/patología , Adolescente , Animales , Antígenos Nucleares/metabolismo , Sistemas CRISPR-Cas , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Ensamble y Desensamble de Cromatina , Estudios de Cohortes , Anomalías Craneofaciales/patología , Femenino , Edición Génica , Haploinsuficiencia/fisiología , Humanos , Trastornos del Desarrollo del Lenguaje/patología , Larva/genética , Larva/crecimiento & desarrollo , Masculino , Microcefalia/patología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
19.
Biochem Biophys Res Commun ; 526(2): 485-490, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32238267

RESUMEN

Bacteriophage T4 encodes orthologs of the proteins Rad50 (gp46) and Mre11 (gp47), which form a heterotetrameric complex (MR) that participates in the processing of DNA ends for recombination-dependent DNA repair. Crystal and high-resolution cryo-EM structures of Rad50 have revealed DNA binding sites near the dimer interface of Rad50 opposite of Mre11, and near the base of the coiled-coils that extend out from the globular head domain. An analysis of T4-Rad50 using sequenced-based algorithms to identify DNA binding residues predicts that a conserved region of positively charged residues near the C-terminus, distal to the observed binding sites, interacts with DNA. Mutant proteins were generated to test this prediction and their enzymatic and DNA binding activities were evaluated. Consistent with the predictions, the Rad50 C-terminal mutants had reduced affinity for DNA as measured by Rad50 equilibrium DNA binding assays and an increased Km-DNA as determined in MR complex nuclease assays. Moreover, the allosteric activation of ATP hydrolysis activity due to DNA binding was substantially reduced, suggesting that these residues may be involved in the communication between the DNA and ATP binding sites.


Asunto(s)
Bacteriófago T4/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Virales/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Bacteriófago T4/química , Sitios de Unión , ADN/metabolismo , Proteínas de Unión al ADN/química , Escherichia coli/virología , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Hidrólisis , Modelos Moleculares , Unión Proteica , Proteínas Virales/química
20.
J Craniofac Surg ; 31(5): e471-e475, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32310878

RESUMEN

Kenny-Caffey Syndrome Type 2 (KCS2) is a rare genetic disorder characterized by short stature, skeletal dysplasia, primary hypoparathyroidism, and delayed closure of the anterior fontanelle. Patients with KCS2 typically require multidisciplinary management due to numerous craniofacial and skeletal anomalies. Craniosynostosis, however, has not yet been identified in a patient with KCS2 to the best of our knowledge. We present the first case of craniosynostosis in the setting of KCS2 and provide a comprehensive analysis of the associated craniofacial findings to date. The authors will describe the craniofacial features specific to our patient and review the characteristic morphological features in a manner relevant to early recognition and focused evaluation.


Asunto(s)
Enanismo/diagnóstico por imagen , Hiperostosis Cortical Congénita/diagnóstico por imagen , Hipocalcemia/diagnóstico por imagen , Cráneo/diagnóstico por imagen , Humanos , Hipoparatiroidismo , Lactante , Imagen por Resonancia Magnética , Masculino , Osteocondrodisplasias , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA