Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nucleic Acids Res ; 50(11): 6562-6574, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35670660

RESUMEN

DNA transcription is regulated by a range of diverse mechanisms and primarily by transcription factors that recruit the RNA polymerase complex to the promoter region on the DNA. Protein binding to DNA at nearby or distant sites can synergistically affect this process in a variety of ways, but mainly through direct interactions between DNA-binding proteins. Here we show that a Transcription Activator-Like Effector (TALE), which lacks an activation domain, can enhance transcription in mammalian cells when it binds in the vicinity of and without direct interaction with several different dimeric or monomeric transcription factors. This effect was observed for several TALEs regardless of the recognition sequences and their DNA-bound orientation. TALEs can exert an effect over the distance of tens of nucleotides and it also potentiated KRAB-mediated repression. The augmentation of transcriptional regulation of another transcription factor is characteristic of TALEs, as it was not observed for dCas9/gRNA, zinc finger, or Gal4 DNA-binding domains. We propose that this mechanism involves an allosteric effect exerted on DNA structure or dynamics. This mechanism could be used to modulate transcription but may also play a role in the natural context of TALEs.


Asunto(s)
Efectores Tipo Activadores de la Transcripción , Factores de Transcripción , Transcripción Genética , Animales , Sitios de Unión , ADN/genética , Regulación de la Expresión Génica , Mamíferos/genética , Efectores Tipo Activadores de la Transcripción/genética , Factores de Transcripción/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33893235

RESUMEN

Coiled-coil (CC) dimers are widely used in protein design because of their modularity and well-understood sequence-structure relationship. In CC protein origami design, a polypeptide chain is assembled from a defined sequence of CC building segments that determine the self-assembly of protein cages into polyhedral shapes, such as the tetrahedron, triangular prism, or four-sided pyramid. However, a targeted functionalization of the CC modules could significantly expand the versatility of protein origami scaffolds. Here, we describe a panel of single-chain camelid antibodies (nanobodies) directed against different CC modules of a de novo designed protein origami tetrahedron. We show that these nanobodies are able to recognize the same CC modules in different polyhedral contexts, such as isolated CC dimers, tetrahedra, triangular prisms, or trigonal bipyramids, thereby extending the ability to functionalize polyhedra with nanobodies in a desired stoichiometry. Crystal structures of five nanobody-CC complexes in combination with small-angle X-ray scattering show binding interactions between nanobodies and CC dimers forming the edges of a tetrahedron with the nanobody entering the tetrahedral cavity. Furthermore, we identified a pair of allosteric nanobodies in which the binding to the distant epitopes on the antiparallel homodimeric APH CC is coupled via a strong positive cooperativity. A toolbox of well-characterized nanobodies specific for CC modules provides a unique tool to target defined sites in the designed protein structures, thus opening numerous opportunities for the functionalization of CC protein origami polyhedra or CC-based bionanomaterials.


Asunto(s)
Conformación Proteica en Hélice alfa/fisiología , Ingeniería de Proteínas/métodos , Anticuerpos de Dominio Único/química , Dimerización , Modelos Moleculares , Péptidos/química , Polímeros/metabolismo , Conformación Proteica en Hélice alfa/genética , Dominios Proteicos/genética , Dominios Proteicos/fisiología , Pliegue de Proteína , Multimerización de Proteína , Proteínas/química , Anticuerpos de Dominio Único/metabolismo
3.
FASEB J ; 36(3): e22199, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35157347

RESUMEN

Spike trimer plays a key role in SARS-CoV-2 infection and vaccine development. It consists of a globular head and a flexible stalk domain that anchors the protein into the viral membrane. While the head domain has been extensively studied, the properties of the adjoining stalk are poorly understood. Here, we characterize the coiled-coil formation and thermodynamic stability of the stalk domain and its segments. We find that the N-terminal segment of the stalk does not form coiled-coils and remains disordered in solution. The C-terminal stalk segment forms a trimeric coiled-coil in solution, which becomes significantly stabilized in the context of the full-length stalk. Its crystal structure reveals a novel antiparallel tetramer coiled-coil with an unusual combination of a-d and e-a-d hydrophobic core packing. Structural analysis shows that a subset of hydrophobic residues stabilizes different coiled-coil structures: trimer, tetramer, and heterohexamer, underscoring a highly polymorphic nature of the SARS-CoV-2 stalk sequence.


Asunto(s)
COVID-19/virología , Modelos Moleculares , Dominios Proteicos , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Estabilidad Proteica , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Temperatura , Difracción de Rayos X
4.
Nat Chem Biol ; 15(2): 115-122, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30531965

RESUMEN

Cellular signal transduction is predominantly based on protein interactions and their post-translational modifications, which enable a fast response to input signals. Owing to difficulties in designing new unique protein-protein interactions, designed cellular logic has focused on transcriptional regulation; however, that process has a substantially slower response, because it requires transcription and translation. Here, we present de novo design of modular, scalable signaling pathways based on proteolysis and designed coiled coils (CC) and implemented in mammalian cells. A set of split proteases with highly specific orthogonal cleavage motifs was constructed and combined with strategically positioned cleavage sites and designed orthogonal CC dimerizing domains with tunable affinity for competitive displacement after proteolytic cleavage. This framework enabled the implementation of Boolean logic functions and signaling cascades in mammalian cells. The designed split-protease-cleavable orthogonal-CC-based (SPOC) logic circuits enable response to chemical or biological signals within minutes rather than hours and should be useful for diverse medical and nonmedical applications.


Asunto(s)
Ingeniería de Proteínas/métodos , Mapeo de Interacción de Proteínas/métodos , Animales , Endopeptidasas , Regulación de la Expresión Génica/genética , Humanos , Lógica , Mamíferos , Dominios Proteicos/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Proteolisis , Transducción de Señal , Biología Sintética/métodos
5.
FASEB J ; 34(8): 11068-11086, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32648626

RESUMEN

NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is a multiprotein complex which forms within cells in response to various microbial and self-derived triggers. Mutations in the gene encoding NLRP3 cause rare cryopyrin-associated periodic syndromes (CAPS) and growing evidence links NLRP3 inflammasome to common diseases such as Alzheimer´s disease. In order to modulate different stages of NLRP3 inflammasome assembly nine peptides whose sequences correspond to segments of inflammasome components NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC) were selected. Five peptides inhibited IL-1ß release, caspase-1 activation and ASC oligomerization in response to soluble and particulate NLRP3 triggers. Modulatory peptides also attenuated IL-1ß maturation induced by constitutive CAPS-associated NLRP3 mutants. Peptide corresponding to H2-H3 segment of ASC pyrin domain selectively inhibited NLRP3 inflammasome by binding to NLRP3 pyrin domain in the micromolar range. The peptide had no effect on AIM2 and NLRC4 inflammasomes as well as NF-κB pathway. The peptide effectively dampened neutrophil infiltration in the silica-induced peritonitis and when equipped with Antennapedia or Angiopep-2 motifs crossed the blood-brain barrier in a mouse model. Our study demonstrates that peptides represent an important tool for targeting multiprotein inflammatory complexes and can serve as the basis for the development of novel anti-inflammatory strategies for neurodegeneration.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Péptidos/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Barrera Hematoencefálica/metabolismo , Caspasa 1/metabolismo , Células Cultivadas , Síndromes Periódicos Asociados a Criopirina/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Infiltración Neutrófila/fisiología , Peritonitis/metabolismo
6.
J Biol Chem ; 294(16): 6294-6305, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30782846

RESUMEN

Several antibody-targeting cancer immunotherapies have been developed based on T cell activation at the target cells. One of the most potent activators of T cells are bacterial superantigens, which bind to major histocompatibility complex class II on antigen-presenting cells and activate T cells through T cell receptor. Strong T cell activation is also one of the main weaknesses of this strategy as it may lead to systemic T cell activation. To overcome the limitation of conventional antibody-superantigen fusion proteins, we have split a superantigen into two fragments, individually inactive, until both fragments came into close proximity and reassembled into a biologically active form capable of activating T cell response. A screening method based on fusion between SEA and coiled-coil heterodimers was developed that enabled detection of functional split SEA designs. The split SEA design that demonstrated efficacy in fusion with coiled-coil dimer forming polypeptides was fused to a single chain antibody specific for tumor antigen CD20. This design selectively activated T cells by split SEA-scFv fusion binding to target cells.


Asunto(s)
Enterotoxinas/farmacología , Activación de Linfocitos/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Cadena Única/farmacocinética , Superantígenos/farmacología , Linfocitos T/inmunología , Antígenos CD20/inmunología , Línea Celular Tumoral , Enterotoxinas/genética , Células HEK293 , Humanos , Anticuerpos de Cadena Única/genética , Superantígenos/genética , Linfocitos T/patología
7.
Chem Soc Rev ; 47(10): 3530-3542, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29400389

RESUMEN

The design of new protein folds represents a grand challenge for synthetic, chemical and structural biology. Due to the good understanding of the principles governing its pairing specificity, coiled coil (CC) peptide secondary structure elements can be exploited for the construction of modular protein assemblies acting as a proxy for the straightforward complementarity of DNA modules. The prerequisite for the successful translation of the modular assembly strategy pioneered by DNA nanotechnology to protein design is the availability of orthogonal building modules: a collection of peptides that assemble into CCs only with their predetermined partners. Modular CC-based protein structures can self-assemble from multiple polypeptide chains whose pairing is determined by the interaction pattern of the constituent building blocks. Orthogonal CC sets can however also be used for the design of more complex coiled coil protein origami (CCPO) structures. CCPOs are based on multiple CC modules concatenated into a single polypeptide chain that folds into a polyhedral protein cage as the peptide segments assemble into CC dimers. The CCPO strategy has hitherto led to successful de novo design of protein cages in the shape of a tetrahedron, square pyramid and triangular prism. Recent advances in the design of CC modules and design principles have enabled the construction of CCPOs that self-assemble in vivo without any apparent toxicity to human cells or animals, opening the path towards therapeutic applications. The CCPO platform therefore has potential for diverse applications in biomedicine and biotechnology, from drug delivery to molecular cages.


Asunto(s)
Biotecnología , Proteínas/química , Animales , Humanos , Ingeniería de Proteínas , Estructura Secundaria de Proteína
8.
Methods Mol Biol ; 2671: 3-48, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37308636

RESUMEN

Coiled-coil protein origami (CCPO) is a rationally designed de novo protein fold, constructed by concatenating coiled-coil forming segments into a polypeptide chain, that folds into polyhedral nano-cages. To date, nanocages in the shape of a tetrahedron, square pyramid, trigonal prism, and trigonal bipyramid have been successfully designed and extensively characterized following the design principles of CCPO. These designed protein scaffolds and their favorable biophysical properties are suitable for functionalization and other various biotechnological applications. To further facilitate the development, we are presenting a detailed guide to the world of CCPO, starting from design (CoCoPOD, an integrated platform for designing CCPO strictures) and cloning (modified Golden-gate assembly) to fermentation and isolation (NiNTA, Strep-trap, IEX, and SEC) concluding with standard characterization techniques (CD, SEC-MALS, and SAXS).


Asunto(s)
Biotecnología , Ligando de CD40 , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Biofisica
9.
Sci Adv ; 8(24): eabm8243, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35714197

RESUMEN

Coiled-coil (CC) dimers are versatile, customizable building modules for the design of diverse protein architectures unknown in nature. Incorporation of dynamic self-assembly, regulated by a selected chemical signal, represents an important challenge in the construction of functional polypeptide nanostructures. Here, we engineered metal binding sites to render an orthogonal set of CC heterodimers Zn(II)-responsive as a generally applicable principle. The designed peptides assemble into CC heterodimers only in the presence of Zn(II) ions, reversibly dissociate by metal ion sequestration, and additionally act as pH switches, with low pH triggering disassembly. The developed Zn(II)-responsive CC set is used to construct programmable folding of CC-based nanostructures, from protein triangles to a two-chain bipyramidal protein cage that closes and opens depending on the metal ion. This demonstrates that dynamic self-assembly can be designed into CC-based protein cages by incorporation of metal ion-responsive CC building modules that act as conformational switches and that could also be used in other contexts.

10.
Nanomaterials (Basel) ; 11(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451032

RESUMEN

To date, surface plasmon resonance (SPR) biosensors have been exploited in numerous different contexts while continuously pushing boundaries in terms of improved sensitivity, specificity, portability and reusability. The latter has attracted attention as a viable alternative to disposable biosensors, also offering prospects for rapid screening of biomolecules or biomolecular interactions. In this context here, we developed an approach to successfully regenerate a fiber-optic (FO)-SPR surface when utilizing cobalt (II)-nitrilotriacetic acid (NTA) surface chemistry. To achieve this, we tested multiple regeneration conditions that can disrupt the NTA chelate on a surface fully saturated with His6-tagged antibody fragments (scFv-33H1F7) over ten regeneration cycles. The best surface regeneration was obtained when combining 100 mM EDTA, 500 mM imidazole and 0.5% SDS at pH 8.0 for 1 min with shaking at 150 rpm followed by washing with 0.5 M NaOH for 3 min. The true versatility of the established approach was proven by regenerating the NTA surface for ten cycles with three other model system bioreceptors, different in their size and structure: His6-tagged SARS-CoV-2 spike fragment (receptor binding domain, RBD), a red fluorescent protein (RFP) and protein origami carrying 4 RFPs (Tet12SN-RRRR). Enabling the removal of His6-tagged bioreceptors from NTA surfaces in a fast and cost-effective manner can have broad applications, spanning from the development of biosensors and various biopharmaceutical analyses to the synthesis of novel biomaterials.

11.
Nat Commun ; 12(1): 939, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574245

RESUMEN

Coiled-coil protein origami (CCPO) is a modular strategy for the de novo design of polypeptide nanostructures. CCPO folds are defined by the sequential order of concatenated orthogonal coiled-coil (CC) dimer-forming peptides, where a single-chain protein is programmed to fold into a polyhedral cage. Self-assembly of CC-based nanostructures from several chains, similarly as in DNA nanotechnology, could facilitate the design of more complex assemblies and the introduction of functionalities. Here, we show the design of a de novo triangular bipyramid fold comprising 18 CC-forming segments and define the strategy for the two-chain self-assembly of the bipyramidal cage from asymmetric and pseudo-symmetric pre-organised structural modules. In addition, by introducing a protease cleavage site and masking the interfacial CC-forming segments in the two-chain bipyramidal cage, we devise a proteolysis-mediated conformational switch. This strategy could be extended to other modular protein folds, facilitating the construction of dynamic multi-chain CC-based complexes.


Asunto(s)
Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína , Proteínas/química , ADN/química , Modelos Moleculares , Nanoestructuras/química , Nanotecnología , Péptidos/química , Conformación Proteica , Ingeniería de Proteínas , Proteínas/genética
12.
Nat Commun ; 12(1): 940, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574262

RESUMEN

Natural proteins are characterised by a complex folding pathway defined uniquely for each fold. Designed coiled-coil protein origami (CCPO) cages are distinct from natural compact proteins, since their fold is prescribed by discrete long-range interactions between orthogonal pairwise-interacting coiled-coil (CC) modules within a single polypeptide chain. Here, we demonstrate that CCPO proteins fold in a stepwise sequential pathway. Molecular dynamics simulations and stopped-flow Förster resonance energy transfer (FRET) measurements reveal that CCPO folding is dominated by the effective intra-chain distance between CC modules in the primary sequence and subsequent folding intermediates, allowing identical CC modules to be employed for multiple cage edges and thus relaxing CCPO cage design requirements. The number of orthogonal modules required for constructing a CCPO tetrahedron can be reduced from six to as little as three different CC modules. The stepwise modular nature of the folding pathway offers insights into the folding of tandem repeat proteins and can be exploited for the design of modular protein structures based on a given set of orthogonal modules.


Asunto(s)
Dominios Proteicos , Pliegue de Proteína , Proteínas/química , Secuencia de Aminoácidos , Cinética , Simulación de Dinámica Molecular , Péptidos/química , Conformación Proteica , Ingeniería de Proteínas , Multimerización de Proteína , Proteínas/genética
13.
Vaccines (Basel) ; 9(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925446

RESUMEN

The response of the adaptive immune system is augmented by multimeric presentation of a specific antigen, resembling viral particles. Several vaccines have been designed based on natural or designed protein scaffolds, which exhibited a potent adaptive immune response to antigens; however, antibodies are also generated against the scaffold, which may impair subsequent vaccination. In order to compare polypeptide scaffolds of different size and oligomerization state with respect to their efficiency, including anti-scaffold immunity, we compared several strategies of presentation of the RBD domain of the SARS-CoV-2 spike protein, an antigen aiming to generate neutralizing antibodies. A comparison of several genetic fusions of RBD to different nanoscaffolding domains (foldon, ferritin, lumazine synthase, and ß-annulus peptide) delivered as DNA plasmids demonstrated a strongly augmented immune response, with high titers of neutralizing antibodies and a robust T-cell response in mice. Antibody titers and virus neutralization were most potently enhanced by fusion to the small ß-annulus peptide scaffold, which itself triggered a minimal response in contrast to larger scaffolds. The ß-annulus fused RBD protein increased residence in lymph nodes and triggered the most potent viral neutralization in immunization by a recombinant protein. Results of the study support the use of a nanoscaffolding platform using the ß-annulus peptide for vaccine design.

14.
Nat Biotechnol ; 35(11): 1094-1101, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29035374

RESUMEN

Polypeptides and polynucleotides are natural programmable biopolymers that can self-assemble into complex tertiary structures. We describe a system analogous to designed DNA nanostructures in which protein coiled-coil (CC) dimers serve as building blocks for modular de novo design of polyhedral protein cages that efficiently self-assemble in vitro and in vivo. We produced and characterized >20 single-chain protein cages in three shapes-tetrahedron, four-sided pyramid, and triangular prism-with the largest containing >700 amino-acid residues and measuring 11 nm in diameter. Their stability and folding kinetics were similar to those of natural proteins. Solution small-angle X-ray scattering (SAXS), electron microscopy (EM), and biophysical analysis confirmed agreement of the expressed structures with the designs. We also demonstrated self-assembly of a tetrahedral structure in bacteria, mammalian cells, and mice without evidence of inflammation. A semi-automated computational design platform and a toolbox of CC building modules are provided to enable the design of protein cages in any polyhedral shape.


Asunto(s)
Ingeniería de Proteínas , Proteínas/química , Modelos Moleculares , Nanoestructuras , Pliegue de Proteína , Multimerización de Proteína , Estructura Secundaria de Proteína
15.
Essays Biochem ; 60(4): 315-324, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27903819

RESUMEN

The complexity of designed bionano-scale architectures is rapidly increasing mainly due to the expanding field of DNA-origami technology and accurate protein design approaches. The major advantage offered by polypeptide nanostructures compared with most other polymers resides in their highly programmable complexity. Proteins allow in vivo formation of well-defined structures with a precise spatial arrangement of functional groups, providing extremely versatile nano-scale scaffolds. Extending beyond existing proteins that perform a wide range of functions in biological systems, it became possible in the last few decades to engineer and predict properties of completely novel protein folds, opening the field of protein nanostructure design. This review offers an overview on rational and computational design approaches focusing on the main achievements of novel protein nanostructure design.


Asunto(s)
Nanoestructuras/química , Ingeniería de Proteínas/métodos , Proteínas/química , Animales , Humanos , Modelos Moleculares , Péptidos/metabolismo , Mapas de Interacción de Proteínas
17.
Noncoding RNA ; 1(1): 44-52, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29861414

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate the expression of target mRNAs. MicroRNA genes themselves are regulated through epigenetic mechanisms, such as histone modifications and/or DNA methylation of CpG islands. Aberrant CpG island methylation patterns are frequently associated with cancer and thus researching DNA methylation of miRNA genes is a topic of increased research interest. Large quantities of available data from various studies are fragmented and incomplete; therefore, integration was performed. Data from 150 articles revealed 180 miRNA genes shown to be regulated via DNA methylation in 36 cancer types. From the total of 2588 known mature miRNA 6.9% (180/2588) miRNAs have been shown to be epigenetically regulated by DNA methylation. 45.5% (82/180) of miRNA genes were shown to be methylated in at least two cancer types among them hsa-miR-34b, hsa-miR-34c and hsa-miR-34a were found to be silenced in 24, 21 and 17 cancer types, respectively. The other 54.4% (98/180) miRNA genes regulated by DNA methylation were found to be specific for a certain type of cancer and therefore represent specific biomarker potential. Because specific miRNAs have diagnostic, prognostic and therapeutic potential, the systematically review of the field offers an overview of the field and facilitates experiment planning, generation of more targeted hypotheses and more efficient biomarker and target development.

18.
Discoveries (Craiova) ; 2(2): e18, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32309547

RESUMEN

There is an increasing research interest regarding deregulation of microRNA (miRNA) expression by DNA methylation in cancer. The aim of this study was to integrate data from publications and identify miRNA genes shown to be silenced in the highest number of cancer types and thus facilitate biomarker and therapeutic development. We integrated relevant data from 104 published scientific articles. The following databases and bioinformatics tools were used for the analysis: miRBase, miRNA Genomic Viewer, MultAlin, miRNA SNiPer, TargetScan, Ensembl, MethPrimer, TarBase, miRecords, and ChIPBase. Among 2578 currently known human miRNAs and 158 known to be regulated by DNA methylation, miR-34 gene family (miR-34a, -34b, and -34c) was shown to be silenced by DNA methylation in the highest number of cancer types. Consequently, we developed the miR-34 gene family regulatory atlas, consisting of its upstream regulators and downstream targets including transcription factor binding sites (TFBSs), CpG islands, genetic variability and overlapping QTL. MicroRNA-34 gene family has a potential as a cancer biomarker and target for epigenetic drugs. This potential has already been recognized as MRX34 is well into phase I studies. The developed miR-34 gene family regulatory atlas presented in this study provides a starting point for further analyses and could thus facilitate development of therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA