Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Semin Immunol ; 69: 101800, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37494738

RESUMEN

The defense against infectious diseases, either through natural immunity or after vaccinations, relies on the generation and maintenance of protective T cell memory. Naïve T cells are at the center of memory T cell generation during primary responses. Upon activation, they undergo a complex, highly regulated differentiation process towards different functional states. Naïve T cells maintained into older age have undergone epigenetic adaptations that influence their fate decisions during differentiation. We review age-sensitive, molecular pathways and gene regulatory networks that bias naïve T cell differentiation towards effector cell generation at the expense of memory and Tfh cells. As a result, T cell differentiation in older adults is associated with release of bioactive waste products into the microenvironment, higher stress sensitivity as well as skewing towards pro-inflammatory signatures and shorter life spans. These maladaptations not only contribute to poor vaccine responses in older adults but also fuel a more inflammatory state.


Asunto(s)
Memoria Inmunológica , Linfocitos T , Humanos , Anciano , Diferenciación Celular , Envejecimiento , Activación de Linfocitos , Linfocitos T CD8-positivos
2.
J Cell Sci ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155850

RESUMEN

His Domain Protein Tyrosine Phosphatase (HD-PTP) facilitates function of the endosomal sorting complexes required for transport (ESCRTs) during multivesicular body (MVB) formation. To uncover its role in physiological homeostasis, embryonic lethality caused by a complete lack of HD-PTP was bypassed through generation of hypomorphic mice expressing reduced protein, resulting in animals that are viable into adulthood. These mice exhibited marked lipodystrophy and decreased receptor-mediated signaling within white adipose tissue (WAT), involving multiple prominent pathways including RAS/MAPK, PI3K/AKT and RTKs such as EGFR. EGFR signaling was dissected in vitro to assess the nature of defective signaling, revealing decreased trans-autophosphorylation and downstream effector activation, despite normal EGF binding. This corresponds to decreased plasma membrane cholesterol and increased lysosomal cholesterol, likely resulting from defective endosomal maturation necessary for cholesterol trafficking and homeostasis. ESCRT components Vps4 and HRS have previously been implicated in cholesterol homeostasis, thus these findings expand knowledge on which ESCRT subunits are involved in cholesterol homeostasis and highlight a non-canonical role for HD-PTP in signal regulation and adipose tissue homeostasis.

3.
Gastroenterology ; 157(1): 210-226.e12, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30878468

RESUMEN

BACKGROUND & AIMS: The CCNE1 locus, which encodes cyclin E1, is amplified in many types of cancer cells and is activated in hepatocellular carcinomas (HCCs) from patients infected with hepatitis B virus or adeno-associated virus type 2, due to integration of the virus nearby. We investigated cell-cycle and oncogenic effects of cyclin E1 overexpression in tissues of mice. METHODS: We generated mice with doxycycline-inducible expression of Ccne1 (Ccne1T mice) and activated overexpression of cyclin E1 from age 3 weeks onward. At 14 months of age, livers were collected from mice that overexpress cyclin E1 and nontransgenic mice (controls) and analyzed for tumor burden and by histology. Mouse embryonic fibroblasts (MEFs) and hepatocytes from Ccne1T and control mice were analyzed to determine the extent to which cyclin E1 overexpression perturbs S-phase entry, DNA replication, and numbers and structures of chromosomes. Tissues from 4-month-old Ccne1T and control mice (at that age were free of tumors) were analyzed for chromosome alterations, to investigate the mechanisms by which cyclin E1 predisposes hepatocytes to transformation. RESULTS: Ccne1T mice developed more hepatocellular adenomas and HCCs than control mice. Tumors developed only in livers of Ccne1T mice, despite high levels of cyclin E1 in other tissues. Ccne1T MEFs had defects that promoted chromosome missegregation and aneuploidy, including incomplete replication of DNA, centrosome amplification, and formation of nonperpendicular mitotic spindles. Whereas Ccne1T mice accumulated near-diploid aneuploid cells in multiple tissues and organs, polyploidization was observed only in hepatocytes, with losses and gains of whole chromosomes, DNA damage, and oxidative stress. CONCLUSIONS: Livers, but not other tissues of mice with inducible overexpression of cyclin E1, develop tumors. More hepatocytes from the cyclin E1-overexpressing mice were polyploid than from control mice, and had losses or gains of whole chromosomes, DNA damage, and oxidative stress; all of these have been observed in human HCC cells. The increased risk of HCC in patients with hepatitis B virus or adeno-associated virus type 2 infection might involve activation of cyclin E1 and its effects on chromosomes and genomes of liver cells.


Asunto(s)
Adenoma de Células Hepáticas/genética , Carcinoma Hepatocelular/genética , Inestabilidad Cromosómica/genética , Ciclina E/genética , Neoplasias Hepáticas/genética , Hígado/metabolismo , Proteínas Oncogénicas/genética , Adenoma de Células Hepáticas/patología , Adenoma de Células Hepáticas/virología , Animales , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Estructuras Cromosómicas , Daño del ADN/genética , Replicación del ADN , Dependovirus , Fibroblastos , Hepatitis B Crónica , Hepatocitos , Hígado/patología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Ratones , Estrés Oxidativo/genética , Infecciones por Parvoviridae , Parvovirinae , Poliploidía , Puntos de Control de la Fase S del Ciclo Celular
4.
Curr Opin Lipidol ; 30(3): 177-185, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30913069

RESUMEN

PURPOSE OF REVIEW: Senescent cells have recently been identified as key players in the development of metabolic dysfunction. In this review, we will highlight recent developments in this field and discuss the concept of targeting these cells to prevent or treat cardiometabolic diseases. RECENT FINDINGS: Evidence is accumulating that cellular senescence contributes to adipose tissue dysfunction, presumably through induction of low-grade inflammation and inhibition of adipogenic differentiation leading to insulin resistance and dyslipidaemia. Senescent cells modulate their surroundings through their bioactive secretome and only a relatively small number of senescent cells is sufficient to cause persistent physical dysfunction even in young mice. Proof-of-principle studies showed that selective elimination of senescent cells can prevent or delay the development of cardiometabolic diseases in mice. SUMMARY: The metabolic consequences of senescent cell accumulation in various tissues are now unravelling and point to new therapeutic opportunities for the treatment of cardiometabolic diseases.


Asunto(s)
Senescencia Celular , Enfermedades Metabólicas/patología , Miocardio/metabolismo , Miocardio/patología , Tejido Adiposo/patología , Animales , Humanos , Enfermedades Metabólicas/complicaciones , Enfermedades Metabólicas/metabolismo
5.
J Biol Chem ; 291(13): 6754-71, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26757819

RESUMEN

Bone degenerative pathologies like osteoporosis may be initiated by age-related shifts in anabolic and catabolic responses that control bone homeostasis. Here we show that sulforaphane (SFN), a naturally occurring isothiocyanate, promotes osteoblast differentiation by epigenetic mechanisms. SFN enhances active DNA demethylation viaTet1andTet2and promotes preosteoblast differentiation by enhancing extracellular matrix mineralization and the expression of osteoblastic markers (Runx2,Col1a1,Bglap2,Sp7,Atf4, andAlpl). SFN decreases the expression of the osteoclast activator receptor activator of nuclear factor-κB ligand (RANKL) in osteocytes and mouse calvarial explants and preferentially induces apoptosis in preosteoclastic cells via up-regulation of theTet1/Fas/Caspase 8 and Caspase 3/7 pathway. These mechanistic effects correlate with higher bone volume (∼20%) in both normal and ovariectomized mice treated with SFN for 5 weeks compared with untreated mice as determined by microcomputed tomography. This effect is due to a higher trabecular number in these mice. Importantly, no shifts in mineral density distribution are observed upon SFN treatment as measured by quantitative backscattered electron imaging. Our data indicate that the food-derived compound SFN epigenetically stimulates osteoblast activity and diminishes osteoclast bone resorption, shifting the balance of bone homeostasis and favoring bone acquisition and/or mitigation of bone resorptionin vivo Thus, SFN is a member of a new class of epigenetic compounds that could be considered for novel strategies to counteract osteoporosis.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Resorción Ósea/prevención & control , Isotiocianatos/farmacología , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Resorción Ósea/genética , Resorción Ósea/metabolismo , Resorción Ósea/patología , Caspasa 8/genética , Caspasa 8/metabolismo , Diferenciación Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Epigénesis Genética , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patología , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Ovariectomía , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Ligando RANK/genética , Ligando RANK/metabolismo , Transducción de Señal , Factor de Transcripción Sp7 , Sulfóxidos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Microtomografía por Rayos X
6.
FASEB J ; 29(4): 1344-59, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25491310

RESUMEN

Serum amyloid A (A-SAA/Saa3) was shown before to affect osteoblastic metabolism. Here, using RT-quantitative PCR and/or immunoblotting, we show that expression of mouse Saa3 and human SAA1 and SAA2 positively correlates with increased cellular maturation toward the osteocyte phenotype. Expression is not detected in C3H10T1/2 embryonic fibroblasts but is successively higher in preosteoblastic MC3T3-E1 cells, late osteoblastic MLO-A5 cells, and MLO-Y4 osteocytes, consistent with findings using primary bone cells from newborn mouse calvaria. Recombinant Saa3 protein functionally inhibits osteoblast differentiation as reflected by reductions in the expression of osteoblast markers and decreased mineralization in newborn mouse calvaria. Yet, Saa3 protein enhances osteoclastogenesis in mouse macrophages/monocytes based on the number of multinucleated and tartrate-resistant alkaline phosphatase-positive cells and Calcr mRNA expression. Depletion of Saa3 in MLO osteocytes results in the loss of the mature osteocyte phenotype. Recombinant osteocalcin, which is reciprocally regulated with Saa3 at the osteoblast/osteocyte transition, attenuates Saa3 expression in MLO-Y4 osteocytes. Mechanistically, Saa3 produced by MLO-Y4 osteocytes is integrated into the extracellular matrix of MC3T3-E1 osteoblasts, where it associates with the P2 purinergic receptor P2rx7 to stimulate Mmp13 expression via the P2rx7/MAPK/ERK/activator protein 1 axis. Our data suggest that Saa3 may function as an important coupling factor in bone development and homeostasis.


Asunto(s)
Huesos/metabolismo , Proteína Amiloide A Sérica/metabolismo , Células 3T3 , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Huesos/citología , Diferenciación Celular , Línea Celular , Células Cultivadas , Homeostasis , Humanos , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Osteoblastos/citología , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Osteocitos/citología , Osteocitos/metabolismo , Osteogénesis , Comunicación Paracrina , Filogenia , ARN Interferente Pequeño/genética , Receptores Purinérgicos P2X7/metabolismo , Homología de Secuencia de Aminoácido , Proteína Amiloide A Sérica/antagonistas & inhibidores , Proteína Amiloide A Sérica/genética , Cráneo/citología , Cráneo/metabolismo
7.
bioRxiv ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39211225

RESUMEN

Memory T cells are a highly dynamic and heterogeneous population that is maintained by cytokine-driven homeostatic proliferation interspersed with episodes of antigen-mediated expansion and contraction which affect their functional state and their durability. This heterogeneity complicates studies on the impact of aging on global human memory cells, specifically, it is unclear how aging drives memory T cell dysfunction. Here, we used chronic infection with Epstein-Barr virus (EBV) to assess the influence of age on memory states at the level of antigen-specific CD8 + T cells. We find that in young adults (<40 years), EBV-specific CD8 + T cells assume preferred differentiation states depending on their peptide specificity. By age >65-years, different T cell specificities had undergone largely distinct aging trajectories, which had in common a loss in adaptive and a gain in innate immunity signatures. No evidence was seen for cellular senescence or exhaustion. While naïve/stem-like EBV-specific T cells disappeared with age, T cell diversity of EBV-specific memory cells did not change or even increased. In summary, by controlling for antigen specificity we uncover age-associated shifts in gene expression and TCR diversity that have implications for optimizing vaccination strategies and adoptive T cell therapy.

8.
JCI Insight ; 9(5)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329813

RESUMEN

The human adult immune system maintains normal T cell counts and compensates for T cell loss throughout life, mainly through peripheral homeostatic proliferation after the ability of the thymus to generate new T cells has rapidly declined at adolescence. This process is mainly driven by STAT5-activating cytokines, most importantly IL-7, and is very effective in maintaining a large naive CD4+ T cell compartment into older age. Here, we describe that naive CD4+ T cells undergo adaptations to optimize IL-7 responses by upregulating the guanine-nucleotide exchange factor PREX1 in older age. PREX1 promotes nuclear translocation of phosphorylated STAT5, thereby supporting homeostatic proliferation in response to IL-7. Through the same mechanism, increased expression of PREX1 also biases naive cells to differentiate into effector T cells. These findings are consistent with the concept that primarily beneficial adaptations during aging, i.e., improved homeostasis, account for unfavorable functions of the aged immune system, in this case biased differentiation.


Asunto(s)
Linfocitos T CD4-Positivos , Factor de Transcripción STAT5 , Adulto , Humanos , Anciano , Factor de Transcripción STAT5/metabolismo , Interleucina-7/metabolismo , Proliferación Celular , Homeostasis , Factores de Intercambio de Guanina Nucleótido/metabolismo
9.
J Clin Invest ; 134(16)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38885295

RESUMEN

IgG4-related disease (IgG4-RD) is a systemic immune-mediated fibroinflammatory disease whose pathomechanisms remain poorly understood. Here, we identified gene variants in familial IgG4-RD and determined their functional consequences. All 3 affected members of the family shared variants of the transcription factor IKAROS, encoded by IKZF1, and the E3 ubiquitin ligase UBR4. The IKAROS variant increased binding to the FYN promoter, resulting in higher transcription of FYN in T cells. The UBR4 variant prevented the lysosomal degradation of the phosphatase CD45. In the presence of elevated FYN, CD45 functioned as a positive regulatory loop, lowering the threshold for T cell activation. Consequently, T cells from the affected family members were hyperresponsive to stimulation. When transduced with a low-avidity, autoreactive T cell receptor, their T cells responded to the autoantigenic peptide. In parallel, high expression of FYN in T cells biased their differentiation toward Th2 polarization by stabilizing the transcription factor JunB. This bias was consistent with the frequent atopic manifestations in patients with IgG4-RD, including the affected family members in the present study. Building on the functional consequences of these 2 variants, we propose a disease model that is not only instructive for IgG4-RD but also for atopic diseases and autoimmune diseases associated with an IKZF1 risk haplotype.


Asunto(s)
Autoinmunidad , Factor de Transcripción Ikaros , Células Th2 , Ubiquitina-Proteína Ligasas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Autoinmunidad/genética , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/inmunología , Enfermedad Relacionada con Inmunoglobulina G4/genética , Enfermedad Relacionada con Inmunoglobulina G4/inmunología , Enfermedad Relacionada con Inmunoglobulina G4/patología , Linaje , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/inmunología , Células Th2/inmunología , Células Th2/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología
10.
Front Immunol ; 14: 1250916, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662959

RESUMEN

Immune memory is a requisite and remarkable property of the immune system and is the biological foundation of the success of vaccinations in reducing morbidity from infectious diseases. Some vaccines and infections induce long-lasting protection, but immunity to other vaccines and particularly in older adults rarely persists over long time periods. Failed induction of an immune response and accelerated waning of immune memory both contribute to the immuno-compromised state of the older population. Here we review how T cell memory is influenced by age. T cell memory is maintained by a dynamic population of T cells that are heterogeneous in their kinetic parameters under homeostatic condition and their function. Durability of T cell memory can be influenced not only by the loss of a clonal progeny, but also by broader changes in the composition of functional states and transition of T cells to a dysfunctional state. Genome-wide single cell studies on total T cells have started to provide insights on the influence of age on cell heterogeneity over time. The most striking findings were a trend to progressive effector differentiation and the activation of pro-inflammatory pathways, including the emergence of CD4+ and CD8+ cytotoxic subsets. Genome-wide data on antigen-specific memory T cells are currently limited but can be expected to provide insights on how changes in T cell subset heterogeneity and transcriptome relate to durability of immune protection.


Asunto(s)
Memoria Inmunológica , Células T de Memoria , Diferenciación Celular , Homeostasis
11.
Sci Transl Med ; 15(699): eadg7291, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285401

RESUMEN

Harnessing the immunogenic potential of senescent cells may be a viable but context-dependent opportunity to boost antitumor immunity.


Asunto(s)
Senescencia Celular , Inmunidad , Neoplasias , Neoplasias/inmunología
12.
Nat Aging ; 3(5): 600-616, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37118554

RESUMEN

Chronic systemic inflammation is one of the hallmarks of the aging immune system. Here we show that activated T cells from older adults contribute to inflammaging by releasing mitochondrial DNA (mtDNA) into their environment due to an increased expression of the cytokine-inducible SH2-containing protein (CISH). CISH targets ATP6V1A, an essential component of the proton pump V-ATPase, for proteasomal degradation, thereby impairing lysosomal function. Impaired lysosomal activity caused intracellular accumulation of multivesicular bodies and amphisomes and the export of their cargos, including mtDNA. CISH silencing in T cells from older adults restored lysosomal activity and prevented amphisomal release. In antigen-specific responses in vivo, CISH-deficient CD4+ T cells released less mtDNA and induced fewer inflammatory cytokines. Attenuating CISH expression may present a promising strategy to reduce inflammation in an immune response of older individuals.


Asunto(s)
Citocinas , ADN Mitocondrial , Anciano , Humanos , Citocinas/metabolismo , ADN Mitocondrial/genética , Inflamación/genética , Lisosomas/metabolismo
13.
Cancer Cell ; 41(7): 1261-1275.e6, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37267954

RESUMEN

Senescent cells play relevant but context-dependent roles during tumorigenesis. Here, in an oncogenic Kras-driven lung cancer mouse model, we found that senescent cells, specifically alveolar macrophages, accumulate early in neoplasia. These macrophages have upregulated expression of p16INK4a and Cxcr1, are distinct from previously defined subsets and are sensitive to senolytic interventions, and suppress cytotoxic T cell responses. Their removal attenuates adenoma development and progression in mice, indicating their tumorigenesis-promoting role. Importantly, we found that alveolar macrophages with these properties increase with normal aging in mouse lung and in human lung adenocarcinoma in situ. Collectively, our study indicates that a subset of tissue-resident macrophages can support neoplastic transformation through altering their local microenvironment, suggesting that therapeutic interventions targeting senescent macrophages may attenuate lung cancer progression during early stages of disease.


Asunto(s)
Neoplasias Pulmonares , Macrófagos Alveolares , Ratones , Humanos , Animales , Macrófagos Alveolares/metabolismo , Senescencia Celular , Pulmón/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias Pulmonares/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Microambiente Tumoral
14.
Cell Rep ; 42(3): 112195, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36884349

RESUMEN

Naive CD4+ T cells are more resistant to age-related loss than naive CD8+ T cells, suggesting mechanisms that preferentially protect naive CD4+ T cells during aging. Here, we show that TRIB2 is more abundant in naive CD4+ than CD8+ T cells and counteracts quiescence exit by suppressing AKT activation. TRIB2 deficiency increases AKT activity and accelerates proliferation and differentiation in response to interleukin-7 (IL-7) in humans and during lymphopenia in mice. TRIB2 transcription is controlled by the lineage-determining transcription factors ThPOK and RUNX3. Ablation of Zbtb7b (encoding ThPOK) and Cbfb (obligatory RUNT cofactor) attenuates the difference in lymphopenia-induced proliferation between naive CD4+ and CD8+ cells. In older adults, ThPOK and TRIB2 expression wanes in naive CD4+ T cells, causing loss of naivety. These findings assign TRIB2 a key role in regulating T cell homeostasis and provide a model to explain the lesser resilience of CD8+ T cells to undergo changes with age.


Asunto(s)
Linfocitos T CD8-positivos , Linfopenia , Anciano , Animales , Humanos , Ratones , Envejecimiento , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Homeostasis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/metabolismo
15.
Sci Transl Med ; 15(712): eadh0380, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37672564

RESUMEN

Autoimmune vasculitis of the medium and large elastic arteries can cause blindness, stroke, aortic arch syndrome, and aortic aneurysm. The disease is often refractory to immunosuppressive therapy and progresses over decades as smoldering aortitis. How the granulomatous infiltrates in the vessel wall are maintained and how tissue-infiltrating T cells and macrophages are replenished are unknown. Single-cell and whole-tissue transcriptomic studies of immune cell populations in vasculitic arteries identified a CD4+ T cell population with stem cell-like features. CD4+ T cells supplying the tissue-infiltrating and tissue-damaging effector T cells survived in tertiary lymphoid structures around adventitial vasa vasora, expressed the transcription factor T cell factor 1 (TCF1), had high proliferative potential, and gave rise to two effector populations, Eomesodermin (EOMES)+ cytotoxic T cells and B cell lymphoma 6 (BCL6)+ T follicular helper-like cells. TCF1hiCD4+ T cells expressing the interleukin 7 receptor (IL-7R) sustained vasculitis in serial transplantation experiments. Thus, TCF1hiCD4+ T cells function as disease stem cells and promote chronicity and autonomy of autoimmune tissue inflammation. Remission-inducing therapies will require targeting stem-like CD4+ T cells instead of only effector T cells.


Asunto(s)
Estructuras Linfoides Terciarias , Vasculitis , Humanos , Arterias , Inflamación , Linfocitos T CD4-Positivos
16.
Mol Metab ; 67: 101652, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509362

RESUMEN

Recent work has established associations between elevated p21, the accumulation of senescent cells, and skeletal muscle dysfunction in mice and humans. Using a mouse model of p21 overexpression (p21OE), we examined if p21 mechanistically contributes to cellular senescence and pathological features in skeletal muscle. We show that p21 induces several core properties of cellular senescence in skeletal muscle, including an altered transcriptome, DNA damage, mitochondrial dysfunction, and the senescence-associated secretory phenotype (SASP). Furthermore, p21OE mice exhibit manifestations of skeletal muscle pathology, such as atrophy, fibrosis, and impaired physical function when compared to age-matched controls. These findings suggest p21 alone is sufficient to drive a cellular senescence program and reveal a novel source of skeletal muscle loss and dysfunction.


Asunto(s)
Senescencia Celular , Músculo Esquelético , Humanos , Senescencia Celular/fisiología
17.
Geroscience ; 45(4): 2559-2587, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37079217

RESUMEN

Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells' (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo-derived senescence signature (SenSig) using a foreign body response-driven fibrosis model in a p16-CreERT2;Ai14 reporter mouse. We identified pericytes and "cartilage-like" fibroblasts as senescent and defined cell type-specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34-CSF1R-TGFßR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.


Asunto(s)
Envejecimiento , Senescencia Celular , Humanos , Ratones , Animales , Senescencia Celular/genética , Envejecimiento/genética , Fenotipo , Fibroblastos , Aprendizaje Automático
18.
Nat Commun ; 13(1): 3722, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764649

RESUMEN

Super-enhancers regulate genes with important functions in processes that are cell type-specific or define cell identity. Mouse embryonic fibroblasts establish 40 senescence-associated super-enhancers regardless of how they become senescent, with 50 activated genes located in the vicinity of these enhancers. Here we show, through gene knockdown and analysis of three core biological properties of senescent cells that a relatively large number of senescence-associated super-enhancer-regulated genes promote survival of senescent mouse embryonic fibroblasts. Of these, Mdm2, Rnase4, and Ang act by suppressing p53-mediated apoptosis through various mechanisms that are also engaged in response to DNA damage. MDM2 and RNASE4 transcription is also elevated in human senescent fibroblasts to restrain p53 and promote survival. These insights identify key survival mechanisms of senescent cells and provide molecular entry points for the development of targeted therapeutics that eliminate senescent cells at sites of pathology.


Asunto(s)
Fibroblastos , Proteína p53 Supresora de Tumor , Animales , Apoptosis/genética , Senescencia Celular/genética , Daño del ADN , Fibroblastos/fisiología , Ratones , Proteína p53 Supresora de Tumor/genética
19.
Nat Commun ; 13(1): 5883, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202795

RESUMEN

Vitamin C deficiency disrupts the integrity of connective tissues including bone. For decades this function has been primarily attributed to Vitamin C as a cofactor for collagen maturation. Here, we demonstrate that Vitamin C epigenetically orchestrates osteogenic differentiation and function by modulating chromatin accessibility and priming transcriptional activity. Vitamin C regulates histone demethylation (H3K9me3 and H3K27me3) and promotes TET-mediated 5hmC DNA hydroxymethylation at promoters, enhancers and super-enhancers near bone-specific genes. This epigenetic circuit licenses osteoblastogenesis by permitting the expression of all major pro-osteogenic genes. Osteogenic cell differentiation is strictly and continuously dependent on Vitamin C, whereas Vitamin C is dispensable for adipogenesis. Importantly, deletion of 5hmC-writers, Tet1 and Tet2, in Vitamin C-sufficient murine bone causes severe skeletal defects which mimic bone phenotypes of Vitamin C-insufficient Gulo knockout mice, a model of Vitamin C deficiency and scurvy. Thus, Vitamin C's epigenetic functions are central to osteoblastogenesis and bone formation and may be leveraged to prevent common bone-degenerating conditions.


Asunto(s)
Deficiencia de Ácido Ascórbico , Osteogénesis , Animales , Ácido Ascórbico/farmacología , Deficiencia de Ácido Ascórbico/genética , Calcificación Fisiológica/genética , Diferenciación Celular/genética , Cromatina , ADN/metabolismo , Metilación de ADN , Histonas/metabolismo , Ratones , Osteogénesis/genética
20.
Nat Aging ; 1(8): 698-714, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34746803

RESUMEN

Senescent cells (SNCs) degenerate the fibrous cap that normally prevents atherogenic plaque rupture, a leading cause of myocardial infarction and stroke. Here we explored the underlying mechanism using pharmacological or transgenic approaches to clear SNCs in the Ldlr -/- mouse model of atherosclerosis. SNC clearance reinforced fully deteriorated fibrous caps in highly advanced lesions, as evidenced by restored vascular smooth muscle cell (VSMC) numbers, elastin content, and overall cap thickness. We found that SNCs inhibit VSMC promigratory phenotype switching in the first interfiber space of the arterial wall directly beneath atherosclerotic plaque, thereby limiting lesion entry of medial VSMCs for fibrous cap assembly or reinforcement. SNCs do so by antagonizing IGF-1 through the secretion of insulin-like growth factor-binding protein 3 (Igfbp3). These data indicate that the intermittent use of senolytic agents or IGFBP-3 inhibition in combination with lipid lowering drugs may provide therapeutic benefit in atherosclerosis.


Asunto(s)
Aterosclerosis , Infarto del Miocardio , Placa Aterosclerótica , Ratones , Animales , Aterosclerosis/tratamiento farmacológico , Placa Aterosclerótica/genética , Infarto del Miocardio/metabolismo , Senescencia Celular , Miocitos del Músculo Liso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA