RESUMEN
BACKGROUND: We investigated structural injury patterns in the peripapillary retinal nerve fibre layer (p-RNFL) and ganglion cell inner plexiform layer (GCIPL) caused by ethambutol treatment. METHODS: Sixty-four patients undergoing ethambutol treatment at Zhejiang Chinese Medicine and Western Medicine Integrated Hospital were recruited. Fourteen (14) exhibited visual dysfunction (abnormal group), and the remaining 50 had no visual dysfunction (subclinical group). The thickness of the p-RNFL, total macular retina layer and GCIPL were measured using Cirrus-HD Optical coherence tomography (Cirrus-HD OCT, Cirrus high-definition optical coherence tomography), and compared with 60 healthy, age-matched controls. RESULTS: The p-RNFL thickness was similar in both subclinical and control groups. When compared with the control group, p-RNFL thickness in the abnormal group was significantly increased in the inferior and superior quadrants (GEE, P = 0.040, P = 0.010 respectively). In contrast with the subclinical group, p-RNFL thickness in the inferior quadrant was increased in the abnormal group (GEE, P = 0.047). The GCIPL thickness in the inferonasal and inferior sectors was significantly deceased in the subclinical group when compared with controls (GEE, P = 0.028, P = 0.047, respectively). The average and minimum value of GCIPL thickness, and thickness in the superonasal, inferior, inferotemporal, superotemporal and superior sectors were significantly decreased in the abnormal group when compared with controls (GEE, P = 0.016, P = 0.001, P = 0.028, P = 0.010, P = 0.012, P = 0.015, P = 0.010, respectively). The cube average macular thickness (CAMT) in the abnormal group was significantly thinner than controls (GEE, P = 0.027). CONCLUSIONS: GCIPL measurements using Cirrus-HD OCT detected retinal ganglion cell layer loss following ethambutol treatment, before visual dysfunction occurred.
Asunto(s)
Enfermedades del Nervio Óptico , Células Ganglionares de la Retina , Etambutol/efectos adversos , Humanos , Fibras Nerviosas , Enfermedades del Nervio Óptico/inducido químicamente , Enfermedades del Nervio Óptico/diagnóstico , Retina , Tomografía de Coherencia ÓpticaRESUMEN
PURPOSE: The purpose of the study was to describe the development of a robotic aided surgical system named RVRMS (robotic vitreous retinal microsurgery system) and to evaluate the capability for using it to perform vitreoretinal surgery. METHODS: The RVRMS was designed and built to include the key components of two independent arms. End-effectors of each arm fix various surgical instruments and perform intraocular manipulation. To evaluate properly the RVRMS, robot-assisted 23-gauge surgical tasks including endolaser for retinal photocoagulation, pars plana vitrectomy (PPV), retinal foreign body removal and retinal vascular cannulation were performed in two different sizes of an animal model. Endolaser was performed in the eye of a living Irish rabbit and the other tasks were done in a harvested porcine eye. For each evaluation, the duration and the successful completion of the task was assessed. RESULTS: Robot-assisted vitreoretinal operations were successfully performed in nine rabbit eyes and 25 porcine eyes without any iatrogenic complication such as retinal tear or retinal detachment. In the task of using an endolaser, three rows of burns around the induced retinal hole were performed in nine rabbit eyes with half size intervals of laser spots. Nine procine eyes underwent PPV followed by successful posterior vitreous detachment (PVD) induction assisted with triamcinolone acetonide (TA). Nine porcine eyes completed removal of a fine stainless steel wire, which was inserted into prepared retinal tissue. Finally, retinal vascular cannulation with a piece of stainless steel wire (6mm length, 45 µm pipe diameter and one end cut to â¼30° slope) was successfully achieved in seven porcine eyes. The average duration of each procedure was 10.91±1.22 min, 11.68±2.11min, 5.90±0.46 min and 13.5±6.2 min, respectively. CONCLUSIONS: Maneuverability, accuracy and stability of robot-assisted vitreoretinal microsurgery using the RVRMS were demonstrated in this study. Wider application research of robotic surgery and improvement of a robotic system should be continued.
Asunto(s)
Microcirugia/métodos , Desprendimiento de Retina/cirugía , Robótica/instrumentación , Vitrectomía/métodos , Animales , Modelos Animales de Enfermedad , Estudios de Factibilidad , Conejos , Desprendimiento de Retina/diagnóstico , Porcinos , Resultado del Tratamiento , Agudeza VisualRESUMEN
BACKGROUND: Ethambutol-induced optic neuropathy (EON) most commonly manifests as bilateral symmetrical loss of vision and often cause serious and irreversible visual impairment because of the lack of early detection and effective treatment. We followed a case of EON with rare binocular asymmetric clinical manifestations and observed the changes of visual function and retinal structure after drug withdrawal, so as to further understand the clinical characteristics of this disease. CASE SUMMARY: A 54-year-old man complained of gradual visual decline in the left eye. The patient presented with best-corrected visual acuity of 20/20 in the right eye and 20/50 in the left eye. Color vision examination revealed difficulty in reading green color plates in the left eye. The visual field manifested as concentric contraction in the left eye. After nearly a month of drug withdrawal, the right eye had a similar decline in visual function. At the last visit, 19 mo after drug withdrawal, the visual function significantly recovered in both eyes. During follow-up optical coherence tomography (OCT) examination, both eyes manifested the thickness of the retinal nerve fiber layer from mild thickening to thinning and finally temporal atrophy, and the ganglion cell-inner plexiform layer showed significant thinning. The difference was that a reversible structural disorder in the outer retina of the nasal macula was detected in the left eye by macular high-definition OCT. CONCLUSION: Nephropathy and high blood pressure, which damage the retinal microcirculation, may cause damage to the outer layer of the retina. Ethambutol may influence photoreceptor as well as retinal ganglion cells.