Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 626(8001): 1011-1018, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38418913

RESUMEN

Liquid-liquid phase separation (LLPS) of biopolymers has recently been shown to play a central role in the formation of membraneless organelles with a multitude of biological functions1-3. The interplay between LLPS and macromolecular condensation is part of continuing studies4,5. Synthetic supramolecular polymers are the non-covalent equivalent of macromolecules but they are not reported to undergo LLPS yet. Here we show that continuously growing fibrils, obtained from supramolecular polymerizations of synthetic components, are responsible for phase separation into highly anisotropic aqueous liquid droplets (tactoids) by means of an entropy-driven pathway. The crowding environment, regulated by dextran concentration, affects not only the kinetics of supramolecular polymerizations but also the properties of LLPS, including phase-separation kinetics, morphology, internal order, fluidity and mechanical properties of the final tactoids. In addition, substrate-liquid and liquid-liquid interfaces proved capable of accelerating LLPS of supramolecular polymers, allowing the generation of a myriad of three-dimensional-ordered structures, including highly ordered arrays of micrometre-long tactoids at surfaces. The generality and many possibilities of supramolecular polymerizations to control emerging morphologies are demonstrated with several supramolecular polymers, opening up a new field of matter ranging from highly structured aqueous solutions by means of stabilized LLPS to nanoscopic soft matter.

2.
Nature ; 593(7857): 61-66, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953410

RESUMEN

In only a few decades, lithium-ion batteries have revolutionized technologies, enabling the proliferation of portable devices and electric vehicles1, with substantial benefits for society. However, the rapid growth in technology has highlighted the ethical and environmental challenges of mining lithium, cobalt and other mineral ore resources, and the issues associated with the safe usage and non-hazardous disposal of batteries2. Only a small fraction of lithium-ion batteries are recycled, further exacerbating global material supply of strategic elements3-5. A potential alternative is to use organic-based redox-active materials6-8 to develop rechargeable batteries that originate from ethically sourced, sustainable materials and enable on-demand deconstruction and reconstruction. Making such batteries is challenging because the active materials must be stable during operation but degradable at end of life. Further, the degradation products should be either environmentally benign or recyclable for reconstruction into a new battery. Here we demonstrate a metal-free, polypeptide-based battery, in which viologens and nitroxide radicals are incorporated as redox-active groups along polypeptide backbones to function as anode and cathode materials, respectively. These redox-active polypeptides perform as active materials that are stable during battery operation and subsequently degrade on demand in acidic conditions to generate amino acids, other building blocks and degradation products. Such a polypeptide-based battery is a first step to addressing the need for alternative chemistries for green and sustainable batteries in a future circular economy.


Asunto(s)
Suministros de Energía Eléctrica , Electroquímica , Péptidos/química , Animales , Bovinos , Línea Celular , Supervivencia Celular , Óxidos N-Cíclicos/química , Ratones , Osteoblastos/citología , Oxidación-Reducción , Péptidos/síntesis química , Desarrollo Sostenible , Viológenos/química
3.
Proc Natl Acad Sci U S A ; 120(2): e2217493120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36598938

RESUMEN

In response to DNA damage, bacterial RecA protein forms filaments with the assistance of DinI protein. The RecA filaments stimulate the autocleavage of LexA, the repressor of more than 50 SOS genes, and activate the SOS response. During the late phase of SOS response, the RecA filaments stimulate the autocleavage of UmuD and λ repressor CI, leading to mutagenic repair and lytic cycle, respectively. Here, we determined the cryo-electron microscopy structures of Escherichia coli RecA filaments in complex with DinI, LexA, UmuD, and λCI by helical reconstruction. The structures reveal that LexA and UmuD dimers bind in the filament groove and cleave in an intramolecular and an intermolecular manner, respectively, while λCI binds deeply in the filament groove as a monomer. Despite their distinct folds and oligomeric states, all RecA filament binders recognize the same conserved protein features in the filament groove. The SOS response in bacteria can lead to mutagenesis and antimicrobial resistance, and our study paves the way for rational drug design targeting the bacterial SOS response.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Respuesta SOS en Genética , Microscopía por Crioelectrón , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Rec A Recombinasas/metabolismo
4.
J Am Chem Soc ; 146(43): 29759-29766, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39405510

RESUMEN

The supramolecular assembly of proteins into irreversible fibrils is often associated with diseases in which aberrant phase transitions occur. Due to the complexity of biological systems and their surrounding environments, the mechanism underlying phase separation-mediated supramolecular assembly is poorly understood, making the reversal of so-called irreversible fibrillization a significant challenge. Therefore, it is crucial to develop simple model systems that provide insights into the mechanistic process of monomers to phase-separated droplets and ordered supramolecular assemblies. Such models can help in investigating strategies to either reverse or modulate these states. Herein, we present a simple synthetic model system composed of three components, including a benzene-1,3,5-tricarboxamide-based supramolecular monomer, a surfactant, and water, to mimic the condensate pathway observed in biological systems. This highly dynamic system can undergo "micelle-droplet-fiber" transition over time and space with a concentration gradient field, regulated by competitive interactions. Importantly, manipulating these competitive interactions through guest molecules, temperature changes, and cosolvents can reverse ordered fibers into a disordered liquid or micellar state. Our model system provides new insights into the critical balance between various interactions among the three components that determine the pathway and reversibility of the process. Extending this "competitive interaction" approach from a simple model system to complex macromolecules, e.g., proteins, could open new avenues for biomedical applications, such as condensate-modifying therapeutics.


Asunto(s)
Micelas , Tensoactivos , Agua , Agua/química , Tensoactivos/química , Benzamidas/química , Sustancias Macromoleculares/química , Transición de Fase
5.
Small ; 20(32): e2310781, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38488770

RESUMEN

Improving target versus off-target ratio in nanomedicine remains a major challenge for increasing drug bioavailability and reducing toxicity. Active targeting using ligands on nanoparticle surfaces is a key approach but has limited clinical success. A potential issue is the integration of targeting ligands also changes the physicochemical properties of nanoparticles (passive targeting). Direct studies to understand the mechanisms of active targeting and off-targeting in vivo are limited by the lack of suitable tools. Here, the biodistribution of a representative active targeting liposome is analyzed, modified with an apolipoprotein E (ApoE) peptide that binds to the low-density lipoprotein receptor (LDLR), using zebrafish embryos. The ApoE liposomes demonstrated the expected liver targeting effect but also accumulated in the kidney glomerulus. The ldlra-/- zebrafish is developed to explore the LDLR-specificity of ApoE liposomes. Interestingly, liver targeting depends on the LDLR-specific interaction, while glomerular accumulation is independent of LDLR and peptide sequence. It is found that cationic charges of peptides and the size of liposomes govern glomerular targeting. Increasing the size of ApoE liposomes can avoid this off-targeting. Taken together, the study shows the potential of the zebrafish embryo model for understanding active and passive targeting mechanisms, that can be used to optimize the design of nanoparticles.


Asunto(s)
Apolipoproteínas E , Liposomas , Péptidos , Receptores de LDL , Pez Cebra , Animales , Liposomas/química , Receptores de LDL/metabolismo , Péptidos/química , Apolipoproteínas E/metabolismo , Embrión no Mamífero/metabolismo , Nanopartículas/química
6.
Brain Behav Immun ; 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39461385

RESUMEN

Parkinson's disease (PD) pathogenesis is characterized by α-synuclein (α-syn) pathology, which is influenced by various factors such as neuroinflammation and senescence. Increasing evidence has suggested a pivotal role for Interleukin-17A(IL-17A) and Interleukin-17 Receptor A (IL-17RA) in PD, yet the trigger and impact of IL-17A/IL-17RA activation in PD remains elusive. This study observed an age-related increase in IL-17A and IL-17RA in the human central nervous system, accompanied by increased α-syn and senescence biomarkers. Interestingly, both levels of IL-17A and IL-17RA in PD patients were significantly elevated compared to age-matched controls, wherein the IL-17A was mainly present in neurons. This abnormal neuronal IL-17A activation in the PD brain was recapitulated in α-syn mouse models. Correspondingly, administration of recombinant IL-17A exacerbated pathological α-syn in both neuron and mouse models. Furthermore, IL-17A/IL-17RA pathway interventions via blocking antibody or shRNA-mediated knockdown can mitigate the effects of pathological α-syn. This study reveals an interplay between dysregulation of the IL-17A/IL-17RA pathway and α-syn, suggesting that regulating the IL-17A/IL-17RA pathway could modify PD progression by disrupting the detrimental cycle.

7.
Biomacromolecules ; 25(8): 4686-4696, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39059106

RESUMEN

Synthetic supramolecular polymers and hydrogels in water are emerging as promising biomaterials due to their modularity and intrinsic dynamics. Here, we introduce temperature sensitivity into the nonfunctionalized benzene-1,3,5-tricarboxamide (BTA-EG4) supramolecular system by incorporating a poly(N-isopropylacrylamide)-functionalized (BTA-PNIPAM) moiety, enabling 3D cell encapsulation applications. The viscous and structural properties in the solution state as well as the mechanical and dynamic features in the gel state of BTA-PNIPAM/BTA-EG4 mixtures were investigated and modulated. In the dilute state (c ∼µM), BTA-PNIPAM acted as a chain capper below the cloud point temperature (Tcp = 24 °C) but served as a cross-linker above Tcp. At higher concentrations (c ∼mM), weak or stiff hydrogels were obtained, depending on the BTA-PNIPAM/BTA-EG4 ratio. The mixture with the highest BTA-PNIPAM ratio was ∼100 times stiffer and ∼10 times less dynamic than BTA-EG4 hydrogel. Facile cell encapsulation in 3D was realized by leveraging the temperature-sensitive sol-gel transition, opening opportunities for utilizing this hydrogel as an extracellular matrix mimic.


Asunto(s)
Resinas Acrílicas , Hidrogeles , Temperatura , Hidrogeles/química , Resinas Acrílicas/química , Materiales Biocompatibles/química , Animales , Ratones , Benzamidas
8.
Molecules ; 29(19)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39407669

RESUMEN

As an important member of innate immunity, macrophages show remarkable plasticity and heterogeneity, and play an important role in immune regulation, tissue development, homeostasis of the internal environment and injury repair. However, the excessive activation of macrophages is closely related to the occurrence and development of many diseases. The prenylated flavonoid structure is one of the characteristic structures isolated from Sophora flavescens, with anti-inflammatory, anti-tumor, anti-allergy and other effects. In this study, the effects of (2R)-3ß,7,4'-trihydroxy-5-methoxy-8-prenylflavanone (TMP), a prenylated dihydroflavonol, on the polarization and phagocytosis of macrophages were systematically studied. In LPS-induced M1-type macrophages, TMP dose-dependently inhibited the expression of COX-2, iNOS and the secretion of NO, IL-1ß, IL-6 and IL-18, showing an inhibitory effect on M1 polarization. Further experiments revealed that it was related to the inhibition of TLR4-related AKT/mTOR, MAPK and NF-κB signaling pathways; in IL-4-induced M2-type macrophages, TMP down-regulated the expression of M2-related Arg1, IL-10, TGF-ß, CD206 and CD163, as well as the phosphorylation levels of AKT1 and STAT6. For macrophages in a physiological state, it was very important for cells to return from a stress state to a phenotypic stability in the M0 state. These results indicated that TMP negatively regulated the M1/M2 polarization of macrophages, and made them tend to M0 homeostasis, which might provide new theoretical and data support for explaining the anti-inflammatory immunoregulatory activity of Sophora flavescens.


Asunto(s)
Macrófagos , Fagocitosis , Sophora , Sophora/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Animales , Fagocitosis/efectos de los fármacos , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Lipopolisacáridos/farmacología , Prenilación , Flavonoles/farmacología , Flavonoles/química , Citocinas/metabolismo , Activación de Macrófagos/efectos de los fármacos , Sophora flavescens
9.
EMBO J ; 38(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30858281

RESUMEN

SREBPs are master regulators of lipid homeostasis and undergo sterol-regulated export from ER to Golgi apparatus for processing and activation via COPII-coated vesicles. While COPII recognizes SREBP through its escort protein SCAP, factor(s) specifically promoting SREBP/SCAP loading to the COPII machinery remains unknown. Here, we show that the ER/lipid droplet-associated protein Cideb selectively promotes the loading of SREBP/SCAP into COPII vesicles. Sterol deprivation releases SCAP from Insig and enhances ER export of SREBP/SCAP by inducing SCAP-Cideb interaction, thereby modulating sterol sensitivity. Moreover, Cideb binds to the guanine nucleotide exchange factor Sec12 to enrich SCAP/SREBP at ER exit sites, where assembling of COPII complex initiates. Loss of Cideb inhibits the cargo loading of SREBP/SCAP, reduces SREBP activation, and alleviates diet-induced hepatic steatosis. Our data point to a linchpin role of Cideb in regulated ER export of SREBP and lipid homeostasis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/fisiología , Retículo Endoplásmico/fisiología , Aparato de Golgi/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Esteroles/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Vesículas Cubiertas por Proteínas de Revestimiento/efectos de los fármacos , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Retículo Endoplásmico/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Células HEK293 , Células Hep G2 , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Transporte de Proteínas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
10.
Chem Rev ; 121(18): 10950-11029, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34338501

RESUMEN

Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.


Asunto(s)
Materiales Biocompatibles , Carbohidratos , Animales , Materiales Biocompatibles/química , Carbohidratos/química , Glicoproteínas/química , Polimerizacion , Polisacáridos/química
11.
Nano Lett ; 21(12): 4990-4998, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34115938

RESUMEN

Platelet-like and cylindrical nanostructures from sugar-based polymers are designed to mimic the aspect ratio of bacteria and achieve uroepithelial cell binding and internalization, thereby improving their potential for local treatment of recurrent urinary tract infections. Polymer nanostructures, derived from amphiphilic block polymers composed of zwitterionic poly(d-glucose carbonate) and semicrystalline poly(l-lactide) segments, were constructed with morphologies that could be tuned to enhance uroepithelial cell binding. These nanoparticles exhibited negligible cytotoxicity, immunotoxicity, and cytokine adsorption, while also offering substantial silver cation loading capacity, extended release, and in vitro antimicrobial activity (as effective as free silver cations) against uropathogenic Escherichia coli. In comparison to spherical analogues, cylindrical and platelet-like nanostructures engaged in significantly higher association with uroepithelial cells, as measured by flow cytometry; despite their larger size, platelet-like nanostructures maintained the capacity for cell internalization. This work establishes initial evidence of degradable platelet-shaped nanostructures as versatile therapeutic carriers for treatment of epithelial infections.


Asunto(s)
Nanopartículas , Polímeros , Antibacterianos/farmacología , Plata , Azúcares
12.
Biomacromolecules ; 22(11): 4633-4641, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34662095

RESUMEN

The use of supramolecular polymers to construct functional biomaterials is gaining more attention due to the tunable dynamic behavior and fibrous structures of supramolecular polymers, which resemble those found in natural systems, such as the extracellular matrix. Nevertheless, to obtain a biomaterial capable of mimicking native systems, complex biomolecules should be incorporated, as they allow one to achieve essential biological processes. In this study, supramolecular polymers based on water-soluble benzene-1,3,5-tricarboxamides (BTAs) were assembled in the presence of hyaluronic acid (HA) both in solution and hydrogel states. The coassembly of BTAs bearing tetra(ethylene glycol) at the periphery (BTA-OEG4) and HA at different ratios showed strong interactions between the two components that led to the formation of short fibers and heterogeneous hydrogels. BTAs were further covalently linked to HA (HA-BTA), resulting in a polymer that was unable to assemble into fibers or form hydrogels due to the high hydrophilicity of HA. However, coassembly of HA-BTA with BTA-OEG4 resulted in the formation of long fibers, similar to those formed by BTA-OEG4 alone, and hydrogels were produced with tunable stiffness ranging from 250 to 700 Pa, which is 10-fold higher than that of hydrogels assembled with only BTA-OEG4. Further coassembly of BTA-OEG4 fibers with other polysaccharides showed that except for dextran, all polysaccharides studied interacted with BTA-OEG4 fibers. The possibility of incorporating polysaccharides into BTA-based materials paves the way for the creation of dynamic complex biomaterials.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Materiales Biocompatibles , Matriz Extracelular , Polímeros
13.
Org Biomol Chem ; 19(38): 8281-8294, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34518862

RESUMEN

Synthetic water-compatible supramolecular polymers based on benzene-1,3,5-tricarboxamides (BTAs) have attracted a lot of interest in recent years, as they are uniquely suited to generate functional multicomponent biomaterials. Their morphologies and intrinsic dynamic behaviour mimic fibrous structures found in nature. Moreover, their modularity allows control of the density of functionalities presented on the surface of the fibres when using functionalized BTA monomers. However, such moieties generally comprise a functionality on only one of three side chains, resulting in lengthy synthetic protocols and limited yields. In this work, we avert the need for desymmetrization of the core by starting from commercially available 5-aminoisophthalic acid. This approach eliminates the statistical reactions and reduces the number of synthetic steps. It also leads to the inversion of the connectivity of one of the amides to the benzene core. By combining spectroscopy, light scattering and cryogenic transmission electron microscopy, we confirm that the inversed amide BTAs (iBTAs) form intermolecular hydrogen bonds and assemble into supramolecular polymers, like previously used symmetrical BTAs, albeit with a slight decrease in water solubility. Solubility problems were overcome by incorporating iBTAs into conventional BTA-based supramolecular polymers. These two-component mixtures formed supramolecular fibres with a morphology and dynamic behaviour similar to BTA-homopolymers. Finally, iBTAs were decorated with a fluorescent dye to demonstrate the synthesis of functional monomers, and to visualize their co-assembly with BTAs. Our results show that functionality can be introduced into supramolecular polymers with monomers that slightly differ in their core structure while maintaining the structure and dynamics of the fibres.

14.
J Am Chem Soc ; 142(41): 17644-17652, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32935541

RESUMEN

Supramolecular fibers in water, micrometers long and several nanometers in width, are among the most studied nanostructures for biomedical applications. These supramolecular polymers are formed through a spontaneous self-assembly process of small amphiphilic molecules by specific secondary interactions. Although many compounds do not possess a stereocenter, recent studies suggest the (co)existence of helical structures, albeit in racemic form. Here, we disclose a series of supramolecular (co)polymers based on water-soluble benzene-1,3,5-tricarboxamides (BTAs) that form double helices, fibers that were long thought to be chains of single molecules stacked in one dimension (1D). Detailed cryogenic transmission electron microscopy (cryo-TEM) studies and subsequent three-dimensional-volume reconstructions unveiled helical repeats, ranging from 15 to 30 nm. Most remarkable, the pitch can be tuned through the composition of the copolymers, where two different monomers with the same core but different peripheries are mixed in various ratios. Like in lipid bilayers, the hydrophobic shielding in the aggregates of these disc-shaped molecules is proposed to be best obtained by dimer formation, promoting supramolecular double helices. It is anticipated that many of the supramolecular polymers in water will have a thermodynamic stable structure, such as a double helix, although small structural changes can yield single stacks as well. Hence, it is essential to perform detailed analyses prior to sketching a molecular picture of these 1D fibers.

15.
Biomacromolecules ; 21(10): 4105-4115, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32991162

RESUMEN

The fast dynamics occurring in natural processes increases the difficulty of creating biomaterials capable of mimicking Nature. Within synthetic biomaterials, water-soluble supramolecular polymers show great potential in mimicking the dynamic behavior of these natural processes. In particular, benzene-1,3,5-tricaboxamide (BTA)-based supramolecular polymers have shown to be highly dynamic through the exchange of monomers within and between fibers, but their suitability as biomaterials has not been yet explored. Herein we systematically study the interactions of BTA supramolecular polymers bearing either tetraethylene glycol or mannose units at the periphery with different biological entities. When BTA fibers were incubated with bovine serum albumin (BSA), the protein conformation was only affected by the fibers containing tetraethylene glycol at the periphery (BTA-OEG4). Coarse-grained molecular simulations showed that BSA interacted with BTA-OEG4 fibers rather than with BTA-OEG4 monomers that are present in solution or that may exchange out of the fibers. Microscopy studies revealed that, in the presence of BSA, BTA-OEG4 retained their fiber conformation although their length was slightly shortened. When further incubated with fetal bovine serum (FBS), both long and short fibers were visualized in solution. Nevertheless, in the hydrogel state, the rheological properties were remarkably preserved. Further studies on the cellular compatibility of all the BTA assemblies and mixtures thereof were performed in four different cell lines. A low cytotoxic effect at most concentrations was observed, confirming the suitability of utilizing functional BTA supramolecular polymers as dynamic biomaterials.


Asunto(s)
Benceno , Materiales Biocompatibles , Benzamidas , Polímeros
16.
BMC Bioinformatics ; 20(Suppl 16): 586, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31787093

RESUMEN

BACKGROUND: Sleep is a complex and dynamic biological process characterized by different sleep patterns. Comprehensive sleep monitoring and analysis using multivariate polysomnography (PSG) records has achieved significant efforts to prevent sleep-related disorders. To alleviate the time consumption caused by manual visual inspection of PSG, automatic multivariate sleep stage classification has become an important research topic in medical and bioinformatics. RESULTS: We present a unified hybrid self-attention deep learning framework, namely HybridAtt, to automatically classify sleep stages by capturing channel and temporal correlations from multivariate PSG records. We construct a new multi-view convolutional representation module to learn channel-specific and global view features from the heterogeneous PSG inputs. The hybrid attention mechanism is designed to further fuse the multi-view features by inferring their dependencies without any additional supervision. The learned attentional representation is subsequently fed through a softmax layer to train an end-to-end deep learning model. CONCLUSIONS: We empirically evaluate our proposed HybridAtt model on a benchmark PSG dataset in two feature domains, referred to as the time and frequency domains. Experimental results show that HybridAtt consistently outperforms ten baseline methods in both feature spaces, demonstrating the effectiveness of HybridAtt in the task of sleep stage classification.


Asunto(s)
Algoritmos , Aprendizaje Profundo , Fases del Sueño/fisiología , Bases de Datos como Asunto , Electroencefalografía/métodos , Humanos , Análisis Multivariante , Polisomnografía , Curva ROC
17.
J Am Chem Soc ; 141(35): 13877-13886, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31387351

RESUMEN

Polysaccharides present in the glycocalyx and extracellular matrix are highly important for a multitude of functions. Oligo- and polysaccharides-based biomaterials are being developed to mimic the glycocalyx, but the spatial functionalization of these polysaccharides represents a major challenge. In this paper, a series of benzene-1,3,5-tricarboxamide (BTA) based supramolecular monomers is designed and synthesized with mono- (BTA-ß-d-glucose; BTA-Glc and BTA-α-d-mannose; BTA-Man) or disaccharides (BTA-ß-d-cellobiose; BTA-Cel) at their periphery or a monosaccharide (BTA-OEG4-α-d-mannose; BTA-OEG4-Man) at the end of a tetraethylene glycol linker. These glycosylated BTAs have been used to generate supramolecular assemblies and it is shown that the nature of the carbohydrate appendage is crucial for the supramolecular (co)polymerization behavior. BTA-Glc and BTA-Man are shown to assemble into micrometers long 1D (bundled) fibers with opposite helicities, whereas BTA-Cel and BTA-OEG4-Man formed small spherical micelles. The latter two monomers are used in a copolymerization approach with BTA-Glc, BTA-Man, or ethylene glycol BTA (BTA-OEG4) to give 1D fibers with BTA-Cel or BTA-OEG4-Man incorporated. Consequently, the carbohydrate appendage influences both the assembly behavior and the internal order. Using this approach it is possible to create 1D-fibers with adjustable saccharide densities exhibiting tailored dynamic exchange profiles. Furthermore, hydrogels with tunable mechanical properties can be achieved, opening up possibilities for the development of multicomponent functional biomaterials.

18.
J Am Chem Soc ; 141(50): 19542-19545, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31820965

RESUMEN

As a rapid, controllable, and easily transferrable approach to the preparation of antimicrobial nanoparticle systems, a one-step, light-driven procedure was developed to produce asymmetric hybrid inorganic-organic nanoparticles (NPs) directly from a homogeneous Ag/polymer mixture. An amphiphilic triblock polymer was designed and synthesized to build biocompatible NPs, consisting of poly(ethylene oxide) (PEO), carboxylic acid-functionalized polyphosphoester (PPE), and poly(l-lactide) (PLLA). Unexpectedly, snowman-like asymmetric nanostructures were subsequently obtained by simply loading silver cations into the polymeric micelles together with purification via centrifugation. With an understanding of the chemistry of the asymmetric NP formation, a controllable preparation strategy was developed by applying UV irradiation. A morphology transition was observed by transmission electron microscopy over the UV irradiation time, from small silver NPs distributed inside the micelles into snowman-like asymmetric NPs, which hold promise for potential antimicrobial applications with their unique two-stage silver release profiles.


Asunto(s)
Luz , Nanopartículas/química , Polímeros/química , Plata/química , Procesos Fotoquímicos
19.
Langmuir ; 35(5): 1503-1512, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30346776

RESUMEN

A zwitterionic polyphosphoester (zPPE), specifically l-cysteine-functionalized poly(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane (zPBYP), has been developed as a poly(ethylene glycol) (PEG) alternative coating material for gold nanoparticles (AuNPs), the most extensively investigated metal nanoparticulate platform toward molecular imaging, photothermal therapy, and drug delivery applications. Thiol-yne conjugation of cysteine transformed an initial azido-terminated and alkynyl-functionalized PBYP homopolymer into zPBYP, offering hydrolytic degradability, biocompatibility, and versatile reactive moieties for installation of a range of functional groups. Despite minor degradation during purification, zPPEs were able to stabilize AuNPs presumably through multivalent interactions between combinations of the side chain zwitterions (thioether and phosphoester groups of the zPPEs with the AuNPs). 31P NMR studies in D2O revealed ca. 20% hydrolysis of the phosphoester moieties of the repeat units had occurred during the workup and purification by aqueous dialysis at pH 3 over ca. 1 d, as observed by the 31P signal of the phosphotriesters resonating at ca. -0.5 to -1.7 shifting downfield to ca. 1.1 to -0.4 ppm, attributed to transformation to phosphates. Further hydrolysis of side chain and backbone units proceeded to an extent of ca. 75% over the next 2 d in nanopure water (pH 5-6). The NMR degradation results were consistent with the broadening and red-shift of the surface plasmon resonance (SPR) observed by UV-vis spectroscopy of the zPPE-coated AuNPs in water over time. All AuNP formulations in this study, including those with citrate, PEG, and zPPE coatings, exhibited negligible immunotoxicity, as determined by cytokine overexpression in the presence of the nanostructures relative to those in cell culture medium. Notably, the zPPE-coated AuNPs displayed superior antifouling properties, as assessed by the extent of cytokine adsorption relative to both the PEGylated and citrate-coated AuNPs. Taken together, the physicochemical and biological evaluations of zPPE-coated AuNPs in conjunction with PEGylated and citrate-coated analogues indicate the promise of zPPEs as favorable alternatives to PEG coatings, with negligible immunotoxicity, good antifouling performance, and versatile reactive groups that enable the preparation of highly tailored nanomaterials for diverse applications.


Asunto(s)
Plásticos Biodegradables/química , Materiales Biocompatibles Revestidos/química , Nanopartículas del Metal/química , Adsorción , Animales , Plásticos Biodegradables/síntesis química , Plásticos Biodegradables/metabolismo , Incrustaciones Biológicas/prevención & control , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/metabolismo , Citocinas/química , Citocinas/metabolismo , Oro/química , Ratones , Unión Proteica , Células RAW 264.7
20.
Molecules ; 24(14)2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31330777

RESUMEN

The electro-peroxone (E-peroxone) process is an emerging electrocatalytic ozonation process that is enabled by in situ producing hydrogen peroxide (H2O2) from cathodic oxygen reduction during ozonation. The in situ-generated H2O2 can then promote ozone (O3) transformation to hydroxyl radicals (•OH), and thus enhance the abatement of ozone-refractory pollutants compared to conventional ozonation. In this study, a chemical kinetic model was employed to simulate micropollutant abatement during the E-peroxone treatment of various water matrices (surface water, secondary wastewater effluent, and groundwater). Results show that by following the O3 and •OH exposures during the E-peroxone process, the abatement kinetics of a variety of model micropollutants could be well predicted using the model. In addition, the effect of specific ozone doses on micropollutant abatement efficiencies could be quantitatively evaluated using the model. Therefore, the chemical kinetic model can be used to reveal important information for the design and optimization of the treatment time and ozone doses of the E-peroxone process for cost-effective micropollutant abatement in water and wastewater treatment.


Asunto(s)
Electroquímica , Modelos Químicos , Oxidación-Reducción , Ozono/química , Contaminantes Químicos del Agua/química , Electroquímica/métodos , Cinética , Agua/análisis , Agua/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA