Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 632
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 186(15): 3208-3226.e27, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37379838

RESUMEN

N7-methylguanosine (m7G) modification, routinely occurring at mRNA 5' cap or within tRNAs/rRNAs, also exists internally in messenger RNAs (mRNAs). Although m7G-cap is essential for pre-mRNA processing and protein synthesis, the exact role of mRNA internal m7G modification remains elusive. Here, we report that mRNA internal m7G is selectively recognized by Quaking proteins (QKIs). By transcriptome-wide profiling/mapping of internal m7G methylome and QKI-binding sites, we identified more than 1,000 high-confidence m7G-modified and QKI-bound mRNA targets with a conserved "GANGAN (N = A/C/U/G)" motif. Strikingly, QKI7 interacts (via C terminus) with the stress granule (SG) core protein G3BP1 and shuttles internal m7G-modified transcripts into SGs to regulate mRNA stability and translation under stress conditions. Specifically, QKI7 attenuates the translation efficiency of essential genes in Hippo signaling pathways to sensitize cancer cells to chemotherapy. Collectively, we characterized QKIs as mRNA internal m7G-binding proteins that modulate target mRNA metabolism and cellular drug resistance.


Asunto(s)
ADN Helicasas , ARN Helicasas , ADN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ARN Helicasas/metabolismo , Gránulos de Estrés , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión al GTP/metabolismo , ARN Mensajero/metabolismo , Gránulos Citoplasmáticos/metabolismo
2.
Cell ; 172(1-2): 90-105.e23, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29249359

RESUMEN

R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N6-methyladenosine (m6A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA signaling.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Glutaratos/farmacología , Leucemia/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Antineoplásicos/uso terapéutico , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Glutaratos/uso terapéutico , Células HEK293 , Humanos , Células Jurkat , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Procesamiento Postranscripcional del ARN
3.
Nature ; 625(7995): 516-522, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38233617

RESUMEN

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices1,2. A 'buffer material' between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode3-5. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber6-8. Thus far, evaporable organic molecules9,10 and atomic-layer-deposited metal oxides11,12 have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.

4.
Nature ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39401515

RESUMEN

Obtaining micron-thick perovskite films of high quality is key to realizing efficient and stable positive (p)-intrinsic (i)-negative (n) perovskite solar cells1,2, but it remains a critical challenge. Here, we report an effective method for producing high-quality, micron-thick formamidinium-based perovskite films by forming coherent grain boundaries, where high-Miller-index-oriented grains grow on the low-Miller-index-oriented grains in a stabilized atmosphere. The resulting micron-thick perovskite films, with enhanced grain boundaries and grains, showed stable material properties and outstanding optoelectronic performances. The small-area solar cells achieved efficiencies of 26.1%. The 1-square-centimeter devices and 5 cm × 5 cm minimodules delivered efficiencies of 24.3% and 21.4%, respectively. The devices processed in a stabilized atmosphere presented a high reproducibility across all four seasons. The encapsulated devices exhibited superior long-term stability under both light and thermal stressors in ambient air.

5.
Nature ; 622(7981): 87-92, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37794266

RESUMEN

Disaster losses are increasing and evidence is mounting that climate change is driving up the probability of extreme natural shocks1-3. Yet it has also proved politically expedient to invoke climate change as an exogenous force that supposedly places disasters beyond the influence of local and national authorities4,5. However, locally determined patterns of urbanization and spatial development are key factors to the exposure and vulnerability of people to climatic shocks6. Using high-resolution annual data, this study shows that, since 1985, human settlements around the world-from villages to megacities-have expanded continuously and rapidly into present-day flood zones. In many regions, growth in the most hazardous flood zones is outpacing growth in non-exposed zones by a large margin, particularly in East Asia, where high-hazard settlements have expanded 60% faster than flood-safe settlements. These results provide systematic evidence of a divergence in the exposure of countries to flood hazards. Instead of adapting their exposure, many countries continue to actively amplify their exposure to increasingly frequent climatic shocks.


Asunto(s)
Ciudades , Inundaciones , Migración Humana , Urbanización , Asia Oriental , Ciudades/estadística & datos numéricos , Cambio Climático/estadística & datos numéricos , Inundaciones/estadística & datos numéricos , Migración Humana/estadística & datos numéricos , Migración Humana/tendencias , Probabilidad , Urbanización/tendencias
6.
Nature ; 623(7989): 1034-1043, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37993715

RESUMEN

Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8+ T cell function and anti-tumour immunity in vivo. TVA is the predominant form of trans-fatty acids enriched in human milk, but the human body cannot produce TVA endogenously1. Circulating TVA in humans is mainly from ruminant-derived foods including beef, lamb and dairy products such as milk and butter2,3, but only around 19% or 12% of dietary TVA is converted to rumenic acid by humans or mice, respectively4,5. Mechanistically, TVA inactivates the cell-surface receptor GPR43, an immunomodulatory G protein-coupled receptor activated by its short-chain fatty acid ligands6-8. TVA thus antagonizes the short-chain fatty acid agonists of GPR43, leading to activation of the cAMP-PKA-CREB axis for enhanced CD8+ T cell function. These findings reveal that diet-derived TVA represents a mechanism for host-extrinsic reprogramming of CD8+ T cells as opposed to the intrahost gut microbiota-derived short-chain fatty acids. TVA thus has translational potential for the treatment of tumours.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ácidos Oléicos , Animales , Bovinos , Humanos , Ratones , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Productos Lácteos , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/uso terapéutico , Leche/química , Neoplasias/dietoterapia , Neoplasias/inmunología , Ácidos Oléicos/farmacología , Ácidos Oléicos/uso terapéutico , Carne Roja , Ovinos
7.
Mol Cell ; 81(18): 3833-3847.e11, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34289383

RESUMEN

Mutant isocitrate dehydrogenase (IDH) 1 and 2 play a pathogenic role in cancers, including acute myeloid leukemia (AML), by producing oncometabolite 2-hydroxyglutarate (2-HG). We recently reported that tyrosine phosphorylation activates IDH1 R132H mutant in AML cells. Here, we show that mutant IDH2 (mIDH2) R140Q commonly has K413 acetylation, which negatively regulates mIDH2 activity in human AML cells by attenuating dimerization and blocking binding of substrate (α-ketoglutarate) and cofactor (NADPH). Mechanistically, K413 acetylation of mitochondrial mIDH2 is achieved through a series of hierarchical phosphorylation events mediated by tyrosine kinase FLT3, which phosphorylates mIDH2 to recruit upstream mitochondrial acetyltransferase ACAT1 and simultaneously activates ACAT1 and inhibits upstream mitochondrial deacetylase SIRT3 through tyrosine phosphorylation. Moreover, we found that the intrinsic enzyme activity of mIDH2 is much higher than mIDH1, thus the inhibitory K413 acetylation optimizes leukemogenic ability of mIDH2 in AML cells by both producing sufficient 2-HG for transformation and avoiding cytotoxic accumulation of intracellular 2-HG.


Asunto(s)
Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/metabolismo , Acetil-CoA C-Acetiltransferasa/metabolismo , Acetilación , Animales , Antineoplásicos/farmacología , Femenino , Humanos , Isocitrato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/metabolismo , Leucemia Mieloide Aguda/genética , Lisina/genética , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Mutación/genética , NADP/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Polimorfismo de Nucleótido Simple/genética , Cultivo Primario de Células , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Quinasas/metabolismo
8.
Mol Cell ; 81(5): 922-939.e9, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33434505

RESUMEN

R-2-hydroxyglutarate (R-2HG), a metabolite produced by mutant isocitrate dehydrogenases (IDHs), was recently reported to exhibit anti-tumor activity. However, its effect on cancer metabolism remains largely elusive. Here we show that R-2HG effectively attenuates aerobic glycolysis, a hallmark of cancer metabolism, in (R-2HG-sensitive) leukemia cells. Mechanistically, R-2HG abrogates fat-mass- and obesity-associated protein (FTO)/N6-methyladenosine (m6A)/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated post-transcriptional upregulation of phosphofructokinase platelet (PFKP) and lactate dehydrogenase B (LDHB) (two critical glycolytic genes) expression and thereby suppresses aerobic glycolysis. Knockdown of FTO, PFKP, or LDHB recapitulates R-2HG-induced glycolytic inhibition in (R-2HG-sensitive) leukemia cells, but not in normal CD34+ hematopoietic stem/progenitor cells, and inhibits leukemogenesis in vivo; conversely, their overexpression reverses R-2HG-induced effects. R-2HG also suppresses glycolysis and downregulates FTO/PFKP/LDHB expression in human primary IDH-wild-type acute myeloid leukemia (AML) cells, demonstrating the clinical relevance. Collectively, our study reveals previously unrecognized effects of R-2HG and RNA modification on aerobic glycolysis in leukemia, highlighting the therapeutic potential of targeting cancer epitranscriptomics and metabolism.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Antineoplásicos/farmacología , Glutaratos/farmacología , Glucólisis/genética , Lactato Deshidrogenasas/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Fosfofructoquinasa-1 Tipo C/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/antagonistas & inhibidores , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Glucólisis/efectos de los fármacos , Células HEK293 , Humanos , Células K562 , Lactato Deshidrogenasas/antagonistas & inhibidores , Lactato Deshidrogenasas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación Oxidativa/efectos de los fármacos , Fosfofructoquinasa-1 Tipo C/antagonistas & inhibidores , Fosfofructoquinasa-1 Tipo C/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Proc Natl Acad Sci U S A ; 121(18): e2400200121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38662550

RESUMEN

Traditional metallic glasses (MGs), based on one or two principal elements, are notoriously known for their lack of tensile ductility at room temperature. Here, we developed a multiprincipal element MG (MPEMG), which exhibits a gigapascal yield strength, significant strain hardening that almost doubles its yield strength, and 2% uniform tensile ductility at room temperature. These remarkable properties stem from the heterogeneous amorphous structure of our MPEMG, which is composed of atoms with significant size mismatch but similar atomic fractions. In sharp contrast to traditional MGs, shear banding in our glass triggers local elemental segregation and subsequent ordering, which transforms shear softening to hardening, hence resulting in shear-band self-halting and extensive plastic flows. Our findings reveal a promising pathway to design stronger, more ductile glasses that can be applied in a wide range of technological fields.

10.
Mol Cell ; 71(6): 973-985.e5, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30197295

RESUMEN

FTO, the first RNA demethylase discovered, mediates the demethylation of internal N6-methyladenosine (m6A) and N6, 2-O-dimethyladenosine (m6Am) at the +1 position from the 5' cap in mRNA. Here we demonstrate that the cellular distribution of FTO is distinct among different cell lines, affecting the access of FTO to different RNA substrates. We find that FTO binds multiple RNA species, including mRNA, snRNA, and tRNA, and can demethylate internal m6A and cap m6Am in mRNA, internal m6A in U6 RNA, internal and cap m6Am in snRNAs, and N1-methyladenosine (m1A) in tRNA. FTO-mediated demethylation has a greater effect on the transcript levels of mRNAs possessing internal m6A than the ones with cap m6Am in the tested cells. We also show that FTO can directly repress translation by catalyzing m1A tRNA demethylation. Collectively, FTO-mediated RNA demethylation occurs to m6A and m6Am in mRNA and snRNA as well as m1A in tRNA.


Asunto(s)
Adenosina/análogos & derivados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/fisiología , Células 3T3-L1 , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Núcleo Celular , Citoplasma , Desmetilación , Expresión Génica/genética , Células HEK293 , Células HeLa , Humanos , Metilación , Ratones , Procesamiento Postranscripcional del ARN/fisiología , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/metabolismo , ARN de Transferencia/metabolismo
11.
Nucleic Acids Res ; 52(7): 3702-3721, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38416578

RESUMEN

In response to heavy metal stress, the RNA-binding protein (RBP) gawky translocates into the nucleus and acts as a chromatin-interacting factor to activate the transcription of many stress-responsive genes. However, the upstream regulators of gawky-mediated transcription and their mechanistic details remain unknown. Here, we identified a class of metal-responsive element-containing circRNAs (MRE circRNAs) which specifically interact with gawky during copper stress. Using classic stress-responsive genes as a readout (Drosophila MT), we found that overexpression of MRE circRNAs led to a significant repression in stress-induced transcription. Mechanistically, MRE circRNAs promote the dissociation of gawky from chromatin and increase its aberrant cytoplasmic accumulation, which ultimately impedes the loading of RNA polymerase II to the active gene loci. The MRE motif serves as an important RNA regulon for maintaining the circRNA-gawky interaction, loss of which impaired the inhibitory effects of MRE circRNAs on gawky. Through RNA-seq analyses, we then identified over 500 additional stress-responsive genes whose induced transcription was attenuated upon MRE circRNA overexpression. Finally, we uncovered the physiological relevance of MRE circRNA-mediated regulation in cellular defense against copper overloading. Taken together, this study proposes that the circRNA-RBP-chromatin axis may represent a fundamental regulatory network for gene expression in eukaryotic cells.


Asunto(s)
Cromatina , ARN Circular , Transcripción Genética , Animales , Cromatina/metabolismo , Cobre/metabolismo , Regulación de la Expresión Génica , ARN Polimerasa II/metabolismo , ARN Circular/metabolismo , ARN Circular/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Estrés Fisiológico , Drosophila melanogaster
12.
Proc Natl Acad Sci U S A ; 120(20): e2221934120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155890

RESUMEN

Single-cell copy number variations (CNVs), major dynamic changes in humans, result in differential levels of gene expression and account for adaptive traits or underlying disease. Single-cell sequencing is needed to reveal these CNVs but has been hindered by single-cell whole-genome amplification (scWGA) bias, leading to inaccurate gene copy number counting. In addition, most of the current scWGA methods are labor intensive, time-consuming, and expensive with limited wide application. Here, we report a unique single-cell whole-genome library preparation approach based on digital microfluidics for digital counting of single-cell Copy Number Variation (dd-scCNV Seq). dd-scCNV Seq directly fragments the original single-cell DNA and uses these fragments as templates for amplification. These reduplicative fragments can be filtered computationally to generate the original partitioned unique identified fragments, thereby enabling digital counting of copy number variation. dd-scCNV Seq showed an increase in uniformity in the single-molecule data, leading to more accurate CNV patterns compared to other methods with low-depth sequencing. Benefiting from digital microfluidics, dd-scCNV Seq allows automated liquid handling, precise single-cell isolation, and high-efficiency and low-cost genome library preparation. dd-scCNV Seq will accelerate biological discovery by enabling accurate profiling of copy number variations at single-cell resolution.


Asunto(s)
Variaciones en el Número de Copia de ADN , Microfluídica , Humanos , Variaciones en el Número de Copia de ADN/genética , Análisis de Secuencia de ADN/métodos , ADN , Dosificación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de la Célula Individual/métodos
13.
Nature ; 567(7748): 414-419, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30867593

RESUMEN

DNA and histone modifications have notable effects on gene expression1. Being the most prevalent internal modification in mRNA, the N6-methyladenosine (m6A) mRNA modification is as an important post-transcriptional mechanism of gene regulation2-4 and has crucial roles in various normal and pathological processes5-12. However, it is unclear how m6A is specifically and dynamically deposited in the transcriptome. Here we report that histone H3 trimethylation at Lys36 (H3K36me3), a marker for transcription elongation, guides m6A deposition globally. We show that m6A modifications are enriched in the vicinity of H3K36me3 peaks, and are reduced globally when cellular H3K36me3 is depleted. Mechanistically, H3K36me3 is recognized and bound directly by METTL14, a crucial component of the m6A methyltransferase complex (MTC), which in turn facilitates the binding of the m6A MTC to adjacent RNA polymerase II, thereby delivering the m6A MTC to actively transcribed nascent RNAs to deposit m6A co-transcriptionally. In mouse embryonic stem cells, phenocopying METTL14 knockdown, H3K36me3 depletion also markedly reduces m6A abundance transcriptome-wide and in pluripotency transcripts, resulting in increased cell stemness. Collectively, our studies reveal the important roles of H3K36me3 and METTL14 in determining specific and dynamic deposition of m6A in mRNA, and uncover another layer of gene expression regulation that involves crosstalk between histone modification and RNA methylation.


Asunto(s)
Adenosina/análogos & derivados , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Transcripción Genética , Adenosina/metabolismo , Animales , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/metabolismo , Humanos , Lisina/química , Metilación , Metiltransferasas/deficiencia , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Transcriptoma/genética
14.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38518225

RESUMEN

Focal seizures are a type of epileptic event that has plagued the medical community for a long time, and the existing drug treatment is mainly based on the modulation of ${GABA}_a$-receptors to affect GABAergic signaling to achieve the therapeutic purpose. The majority of research currently focuses on the impact of ${GABA}_a$-receptors on neuronal firing, failing to analyze the molecular and ionic mechanisms involved. Specifically, the research on deeper-level mechanisms on how ${GABA}_a$-receptors affect neuronal firing by altering ion activity has not been addressed. This research aimed to study the effects of different ${GABA}_a$-receptor structures on ion activity in focal seizures model by adjusting parameters of the ${GABA}_a$-receptors: the rise time constant (${tau}_1$) and decay time constant (${tau}_2$). The research indicates that as the values of ${tau}_1$ and ${tau}_2$ of the ${GABA}_a$-receptor change, the ion concentration will vary based on the change of the ${GABA}_a$-receptor potential. To a certain extent, the duration of epileptic activity will also be affected to a certain extent. In conclusion, the alteration of ${GABA}_a$-receptor structure will affect the inhibitory effect of interneurons on pyramidal neurons, and different parameters of the ${GABA}_a$-receptor will directly impact the therapeutic effect.


Asunto(s)
Epilepsia , Alta del Paciente , Humanos , Neuronas/fisiología , Convulsiones , Receptores de GABA-A/fisiología , Ácido gamma-Aminobutírico/farmacología
15.
BMC Genomics ; 25(1): 349, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589806

RESUMEN

The fleece traits are important economic traits of goats. With the reduction of sequencing and genotyping cost and the improvement of related technologies, genomic selection for goats has become possible. The research collect pedigree, phenotype and genotype information of 2299 Inner Mongolia Cashmere goats (IMCGs) individuals. We estimate fixed effects, and compare the estimates of variance components, heritability and genomic predictive ability of fleece traits in IMCGs when using the pedigree based Best Linear Unbiased Prediction (ABLUP), Genomic BLUP (GBLUP) or single-step GBLUP (ssGBLUP). The fleece traits considered are cashmere production (CP), cashmere diameter (CD), cashmere length (CL) and fiber length (FL). It was found that year of production, sex, herd and individual ages had highly significant effects on the four fleece traits (P < 0.01). All of these factors should be considered when the genetic parameters of fleece traits in IMCGs are evaluated. The heritabilities of FL, CL, CP and CD with ABLUP, GBLUP and ssGBLUP methods were 0.26 ~ 0.31, 0.05 ~ 0.08, 0.15 ~ 0.20 and 0.22 ~ 0.28, respectively. Therefore, it can be inferred that the genetic progress of CL is relatively slow. The predictive ability of fleece traits in IMCGs with GBLUP (56.18% to 69.06%) and ssGBLUP methods (66.82% to 73.70%) was significantly higher than that of ABLUP (36.73% to 41.25%). For the ssGBLUP method is significantly (29% ~ 33%) higher than that with ABLUP, and which is slightly (4% ~ 14%) higher than that of GBLUP. The ssGBLUP will be as an superiors method for using genomic selection of fleece traits in Inner Mongolia Cashmere goats.


Asunto(s)
Genoma , Cabras , Humanos , Animales , Cabras/genética , Genómica/métodos , Fenotipo , Genotipo , Modelos Genéticos
16.
BMC Genomics ; 25(1): 658, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956486

RESUMEN

BACKGROUND: The cashmere goat industry is one of the main pillars of animal husbandry in Inner Mongolia Autonomous Region, and plays an irreplaceable role in local economic development. With the change in feeding methods and environment, the cashmere produced by Inner Mongolia cashmere goats shows a tendency of coarser, and the cashmere yield can not meet the consumption demand of people. However, the genetic basis behind these changes is not fully understood. We measured cashmere traits, including cashmere yield (CY), cashmere diameter (CD), cashmere thickness (CT), and fleece length (FL) traits for four consecutive years, and utilized Genome-wide association study of four cashmere traits in Inner Mongolia cashmere goats was carried out using new genomics tools to infer genomic regions and functional loci associated with cashmere traits and to construct haplotypes that significantly affect cashmere traits. RESULTS: We estimated the genetic parameters of cashmere traits in Inner Mongolia cashmere goats. The heritability of cashmere yield, cashmere diameter, and fleece length traits of Inner Mongolia cashmere goats were 0.229, 0.359, and 0.250, which belonged to the medium heritability traits (0.2 ~ 0.4). The cashmere thickness trait has a low heritability of 0.053. We detected 151 genome-wide significantly associated SNPs with four cashmere traits on different chromosomes, which were very close to the chromosomes of 392 genes (located within the gene or within ± 500 kb). Notch3, BMPR1B, and CCNA2 have direct functional associations with fibroblasts and follicle stem cells, which play important roles in hair follicle growth and development. Based on GO functional annotation and KEGG enrichment analysis, potential candidate genes were associated with pathways of hair follicle genesis and development (Notch, P13K-Akt, TGF-beta, Cell cycle, Wnt, MAPK). We calculated the effective allele number of the Inner Mongolia cashmere goat population to be 1.109-1.998, the dominant genotypes of most SNPs were wild-type, the polymorphic information content of 57 SNPs were low polymorphism (0 < PIC < 0.25), and the polymorphic information content of 79 SNPs were moderate polymorphism (0.25 < PIC < 0.50). We analyzed the association of SNPs with phenotypes and found that the homozygous mutant type of SNP1 and SNP3 was associated with the highest cashmere yield, the heterozygous mutant type of SNP30 was associated with the lowest cashmere thickness, the wild type of SNP76, SNP77, SNP78, SNP80, and SNP81 was associated with the highest cashmere thickness, and the wild type type of SNP137 was associated with the highest fleece length. 21 haplotype blocks and 68 haplotype combinations were constructed. Haplotypes A2A2, B2B2, C2C2, and D4D4 were associated with increased cashmere yield, haplotypes E2E2, F1F1, G5G5, and G1G5 were associated with decreased cashmere fineness, haplotypes H2H2 was associated with increased cashmere thickness, haplotypes I1I1, I1I2, J1J4, L5L3, N3N2, N3N3, O2O1, P2P2, and Q3Q3 were associated with increased cashmere length. We verified the polymorphism of 8 SNPs by KASP, and found that chr7_g.102631194A > G, chr10_g.82715068 T > C, chr1_g.124483769C > T, chr24_g.12811352C > T, chr6_g.114111249A > G, and chr6_g.115606026 T > C were significantly genotyped in verified populations (P < 0.05). CONCLUSIONS: In conclusion, the genetic effect of single SNP on phenotypes is small, and SNPs are more inclined to be inherited as a whole. By constructing haplotypes from SNPs that are significantly associated with cashmere traits, it will help to reveal the complex and potential causal variations in cashmere traits of Inner Mongolia cashmere goats. This will be a valuable resource for genomics and breeding of the cashmere goat.


Asunto(s)
Estudio de Asociación del Genoma Completo , Cabras , Haplotipos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Cabras/genética , Cabras/crecimiento & desarrollo , Fenotipo , China , Carácter Cuantitativo Heredable
17.
Immunology ; 171(3): 324-338, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37985960

RESUMEN

Viral infection poses a significant threat to human health. In addition to the damage caused by viral replication, the immune response it triggers often leads to more serious adverse consequences. After the occurrence of viral infection, in addition to the adverse consequences of infection, chronic infections can also lead to virus-related autoimmune diseases and tumours. At the same time, the immune response triggered by viral infection is complex, and dysregulated immune response may lead to the occurrence of immune pathology and macrophage activation syndrome. In addition, it may cause secondary immune suppression, especially in patients with compromised immune system, which could lead to the occurrence of secondary infections by other pathogens. This can often result in more severe clinical outcomes. Therefore, regarding the treatment of viral infections, restoring the balance of the immune system is crucial in addition to specific antiviral medications. In recent years, scientists have made an interesting finding that low dose IL-2 (ld-IL-2) could potentially have a crucial function in regulating the immune system and reducing the chances of infection, especially viral infection. Ld-IL-2 exerts immune regulatory effects in different types of viral infections by modulating CD4+ T subsets, CD8+ T cells, natural killer cells, and so on. Our review summarised the role of IL-2 or IL-2 complexes in viral infections. Ld-IL-2 may be an effective strategy for enhancing host antiviral immunity and preventing infection from becoming chronic; additionally, the appropriate use of it can help prevent excessive inflammatory response after infection. In the long term, it may reduce the occurrence of infection-related autoimmune diseases and tumours by promoting the restoration of early immune homeostasis. Furthermore, we have also summarised the application of ld-IL-2 in the context of autoimmune diseases combined with viral infections; it may be a safe and effective strategy for restoring immune homeostasis without compromising the antiviral immune response. In conclusion, focusing on the role of ld-IL-2 in viral infections may provide a new perspective for regulating immune responses following viral infections and improving prognosis.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Virosis , Humanos , Linfocitos T CD8-positivos , Interleucina-2
18.
J Am Chem Soc ; 146(6): 4112-4122, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38226918

RESUMEN

Lipoarabinomannan (LAM) from the Mycobacterium tuberculosis cell envelope represents important targets for the development of new therapeutic agents against tuberculosis, which is a deadly disease that has plagued mankind for a long time. However, the accessibility of long, branched, and complex lipoarabinomannan over 100-mer remains a long-standing challenge. Herein, we report the modular synthesis of mannose-capped lipoarabinomannan 101-mer from the M. tuberculosis cell wall using a one-pot assembly strategy on the basis of glycosyl ortho-(1-phenylvinyl)benzoates (PVB), which not only accelerates the modular synthesis but also precludes the potential problems associated with one-pot glycosylation with thioglycosides. Shorter sequences including 18-mer, 19-mer, and 27-mer are also synthesized for in-depth structure-activity relationship biological studies. Current synthetic routes also highlight the following features: (1) streamlined synthesis of various linear and branched glycans using one-pot orthogonal glycosylation on the combination of glycosyl N-phenyltrifluoroacetimidates, glycosyl ortho-alkynylbenzoates, and glycosyl PVB; (2) highly stereoselective construction of 10 1,2-cis-arabinofuranosyl linkages using 5-O-(2-quinolinecarbonyl)-directing 1,2-cis-arabinofuranosylation via a hydrogen-bond-mediated aglycone delivery strategy; and (3) convergent [(18 + 19) × 2 + 27] one-pot synthesis of the 101-mer LAM polysaccharide. The present work demonstrates that this orthogonal one-pot glycosylation strategy can highly streamline the chemical synthesis of long, branched, and complex polysaccharides.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Manosa , Lipopolisacáridos , Polisacáridos , Pared Celular
19.
J Am Chem Soc ; 146(42): 29053-29063, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39235449

RESUMEN

Extracellular vesicles (EVs) harbor abundant glycans that mediate various functions, such as intercellular communication and disease advancement, which play significant roles in disease progression. However, the presence of EV heterogeneity in body fluids and the complex nature of the glycan structures have posed challenges for the detection of EV glycans. In this study, we provide a streamlined method integrated, membrane-specific separation with lectin-induced aggregation strategy (MESSAGE), for multiplexed profiling of EV glycans. By leveraging a rationally designed lectin-induced aggregation strategy, the expression of EV glycans is converted to size-based signals. With the assistance learning machine algorithms, the MESSAGE strategy with high sensitivity, specificity, and simplicity can be used for early cancer diagnosis and classification, as well as monitoring cancer metastasis via 20 µL plasma sample within 2 h. Furthermore, our platform holds promise for advancing the field of EV-based liquid biopsy for clinical applications, opening new possibilities for the profiling of EV glycan signatures in various disease states.


Asunto(s)
Vesículas Extracelulares , Lectinas , Neoplasias , Polisacáridos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Polisacáridos/química , Lectinas/química , Lectinas/metabolismo , Neoplasias/diagnóstico , Línea Celular Tumoral
20.
Eur J Neurosci ; 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39421897

RESUMEN

Attention is one of the basic cognitive functions sensitive to high altitude, and most studies have focussed on exposure times of approximately 3 years; however, it is unclear how attention changes in migrants who have lived and worked at high altitude for nearly 20 years. We explored the dynamics of attentional networks and neurophysiological mechanisms in migrants over 3-20 years using the Attentional Network Test combined with Electrocardiograph and Electroencephalography and found a consistent quadratic correlation between exposure and executive control efficiency, P3 amplitude and heart rate variability (HRV), with a decrease followed by an increase/relative stability, with approximately 10 years being the breakpoint. However, neither linear nor quadratic trajectories were observed for the alerting and orienting network. Mediation analysis revealed that the P3 amplitude mediated the decrease and increase in executive control efficiency with exposure time depends on the breakpoint. Correlations between HRV and executive control efficiency and P3 amplitude suggest that U-shaped changes in executive control in migrants may be related to body homeostasis maintained by the autonomic nervous system, and that P3 amplitude may serve as a neurophysiological marker of migrants' adaptation/recovery from high-altitude exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA