Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Hepatol ; 77(2): 312-325, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35292349

RESUMEN

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is associated with the dysregulation of lipid metabolism and hepatic inflammation, though the underlying mechanisms remain unclear. We aimed to investigate the role of X-box binding protein-1 (XBP1) in the progression of NASH. METHODS: Human liver tissues obtained from patients with NASH and controls were used to assess XBP1 expression. NASH models were developed in hepatocyte-specific Xbp1 knockout (Xbp1ΔHep), macrophage-specific Xbp1 knockout (Xbp1ΔMf), macrophage-specific Nlrp3 knockout, and wild-type (Xbp1FL/FL or Nlrp3FL/FL) mice fed with a high-fat diet for 26 weeks or a methionine/choline-deficient diet for 6 weeks. RESULTS: The expression of XBP1 was significantly upregulated in liver samples from patients with NASH. Hepatocyte-specific Xbp1 deficiency inhibited the development of steatohepatitis in mice fed the high-fat or methionine/choline-deficient diets. Meanwhile, macrophage-specific Xbp1 knockout mice developed less severe steatohepatitis and fibrosis than wild-type Xbp1FL/FL mice in response to the high-fat or methionine/choline-deficient diets. Macrophage-specific Xbp1 knockout mice showed M2 anti-inflammatory polarization. Xbp1-deleted macrophages reduced steatohepatitis by decreasing the expression of NLRP3 and secretion of pro-inflammatory cytokines, which mediate M2 macrophage polarization in macrophage-specific Xbp1 knockout mice. Steatohepatitis was less severe in macrophage-specific Nlrp3 knockout mice than in wild-type Nlrp3FL/FL mice. Xbp1-deleted macrophages prevented hepatic stellate cell activation by decreasing expression of TGF-ß1. Less fibrotic changes were observed in macrophage-specific Xbp1 knockout mice than in wild-type Xbp1FL/FL mice. Inhibition of XBP1 suppressed the development of NASH. CONCLUSION: XBP1 regulates the development of NASH. XBP1 inhibitors protect against steatohepatitis. Thus, XBP1 is a potential target for the treatment of NASH. LAY SUMMARY: XBP1 is a transcription factor that is upregulated in liver tissues of patients with non-alcoholic steatohepatitis (NASH). Conditional knockout of Xbp1 in hepatocytes resulted in decreased lipid accumulation in mice, while genetic deletion of Xbp1 in macrophages ameliorated nutritional steatohepatitis and fibrosis in mice. Pharmacological inhibition of XBP1 protects against steatohepatitis and fibrosis, highlighting a promising therapeutic strategy for NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Proteína 1 de Unión a la X-Box , Animales , Colina , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Humanos , Hígado/patología , Cirrosis Hepática/patología , Metionina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
2.
JHEP Rep ; 5(5): 100695, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36968217

RESUMEN

Background & Aims: Oxidative stress-mediated ferroptosis and macrophage-related inflammation play an important role in various liver diseases. Here, we explored if and how hepatocyte ferroptosis regulates macrophage stimulator of interferon genes (STING) activation in the development of spontaneous liver damage, fibrosis, and tumorigenesis. Methods: We used a transforming growth factor-beta-activated kinase 1 (TAK1) deficiency-induced model of spontaneous liver damage, fibrosis, and tumorigenesis to investigate hepatocyte ferroptosis and its impact on macrophage STING signalling. Primary hepatocytes and macrophages were used for in vitro experiments. Results: Significant liver injury and increased numbers of intrahepatic M1 macrophages were found in hepatocyte-specific TAK1-deficient (TAK1ΔHEP) mice, peaking at 4 weeks and gradually decreasing at 8 and 12 weeks. Meanwhile, activation of STING signalling was observed in livers from TAK1ΔHEP mice at 4 weeks and had decreased at 8 and 12 weeks. Treatment with a STING inhibitor promoted macrophage M2 polarisation and alleviated liver injury, fibrosis, and tumour burden. TAK1 deficiency exacerbated liver iron metabolism in mice with a high-iron diet. Moreover, consistent with the results from single-cell RNA-Seq dataset, TAK1ΔHEP mice demonstrated an increased oxidative response and hepatocellular ferroptosis, which could be inhibited by reactive oxygen species scavenging. Suppression of ferroptosis by ferrostatin-1 inhibited the activation of macrophage STING signalling, leading to attenuated liver injury and fibrosis and a reduced tumour burden. Mechanistically, increased intrahepatic and serum levels of 8-hydroxydeoxyguanosine were detected in TAK1ΔHEP mice, which was suppressed by ferroptosis inhibition. Treatment with 8-hydroxydeoxyguanosine antibody inhibited macrophage STING activation in TAK1ΔHEP mice. Conclusions: Hepatocellular ferroptosis-derived oxidative DNA damage promotes macrophage STING activation to facilitate the development of liver injury, fibrosis, and tumorigenesis. Inhibition of macrophage STING may represent a novel therapeutic approach for the prevention of chronic liver disease. Impact and implications: The precise mechanism by which hepatocyte ferroptosis regulates macrophage STING activation in the progression of liver damage, fibrosis, and tumorigenesis remains unclear. Herein, we show that deletion of TAK1 in hepatocytes caused oxidative stress-mediated ferroptosis and macrophage-related inflammation in the development of spontaneous liver injury, fibrosis, and hepatocellular carcinoma.

3.
Redox Biol ; 52: 102305, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35367811

RESUMEN

Hepatocellular cell death and macrophage proinflammatory activation contribute to the pathology of various liver diseases, during which XBP1 plays an important role. However, the function and mechanism of XBP1 in thioacetamide (TAA)-induced acute liver injury (ALI) remains unknown. Here, we investigated the effects of XBP1 inhibition on promoting hepatocellular pyroptosis to activate macrophage STING signaling during ALI. While both TAA- and LPS-induced ALI triggered XBP1 activation in hepatocytes, hepatocyte-specific XBP1 knockout mice exhibited exacerbated ALI with increased hepatocellular pyroptosis and enhanced macrophage STING activation. Mechanistically, mtDNA released from TAA-stressed hepatocytes could be engulfed by macrophages, further inducing macrophage STING activation in a cGAS- and dose-dependent manner. XBP1 deficiency increased ROS production to promote hepatocellular pyroptosis by activating NLRP3/caspase-1/GSDMD signaling, which facilitated the extracellular release of mtDNA. Moreover, impaired mitophagy was found in XBP1 deficient hepatocytes, which was reversed by PINK1 overexpression. Mitophagy restoration also inhibited macrophage STING activation and ALI in XBP1 deficient mice. Activation of XBP1-mediated hepatocellular mitophagy and pyroptosis and macrophage STING signaling pathway were observed in human livers with ALI. Collectively, these findings demonstrate that XBP1 deficiency promotes hepatocyte pyroptosis by impairing mitophagy to activate mtDNA/cGAS/STING signaling of macrophages, providing potential therapeutic targets for ALI.


Asunto(s)
Mitofagia , Piroptosis , Proteína 1 de Unión a la X-Box/metabolismo , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/farmacología , Transducción de Señal
4.
JHEP Rep ; 4(11): 100555, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36185574

RESUMEN

Background & Aims: XBP1 modulates the macrophage proinflammatory response, but its function in macrophage stimulator of interferon genes (STING) activation and liver fibrosis is unknown. X-box binding protein 1 (XBP1) has been shown to promote macrophage nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) activation in steatohepatitis. Herein, we aimed to explore the underlying mechanism of XBP1 in the regulation of STING signalling and the subsequent NLRP3 activation during liver fibrosis. Methods: XBP1 expression was measured in the human fibrotic liver tissue samples. Liver fibrosis was induced in myeloid-specific Xbp1-, STING-, and Nlrp3-deficient mice by carbon tetrachloride injection, bile duct ligation, or a methionine/choline-deficient diet. Results: Although increased XBP1 expression was observed in the fibrotic liver macrophages of mice and clinical patients, myeloid-specific Xbp1 deficiency or pharmacological inhibition of XBP1 protected the liver against fibrosis. Furthermore, it inhibited macrophage NLPR3 activation in a STING/IRF3-dependent manner. Oxidative mitochondrial injury facilitated cytosolic leakage of macrophage self-mtDNA and cGAS/STING/NLRP3 signalling activation to promote liver fibrosis. Mechanistically, RNA sequencing analysis indicated a decreased mtDNA expression and an increased BCL2/adenovirus E1B interacting protein 3 (BNIP3)-mediated mitophagy activation in Xbp1-deficient macrophages. Chromatin immunoprecipitation (ChIP) assays further suggested that spliced XBP1 bound directly to the Bnip3 promoter and inhibited the transcription of Bnip3 in macrophages. Xbp1 deficiency decreased the mtDNA cytosolic release and STING/NLRP3 activation by promoting BNIP3-mediated mitophagy activation in macrophages, which was abrogated by Bnip3 knockdown. Moreover, macrophage XBP1/STING signalling contributed to the activation of hepatic stellate cells. Conclusions: Our findings demonstrate that XBP1 controls macrophage cGAS/STING/NLRP3 activation by regulating macrophage self-mtDNA cytosolic leakage via BNIP3-mediated mitophagy modulation, thus providing a novel target against liver fibrosis. Lay summary: Liver fibrosis is a typical progressive process of chronic liver disease, driven by inflammatory and immune responses, and is characterised by an excess of extracellular matrix in the liver. Currently, there is no effective therapeutic strategy for the treatment of liver fibrosis, resulting in high mortality worldwide. In this study, we found that myeloid-specific Xbp1 deficiency protected the liver against fibrosis in mice, while XBP1 inhibition ameliorated liver fibrosis in mice. This study concluded that targeting XBP1 signalling in macrophages may provide a novel strategy for protecting the liver against fibrosis.

5.
Cell Death Discov ; 7(1): 243, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531378

RESUMEN

Liver fibrosis is a patho-physiological process which can develop into cirrhosis, and hepatic carcinoma without intervention. Our study extensively investigated the mechanisms of lncRNA NEAT1 and miR-139-5p in regulating liver fibrosis progression. Our results demonstrated that the expression of lncRNA NEAT1 was increased and the expression of miR-139-5p was decreased in fibrotic liver tissues. LncRNA NEAT1 could sponge miR-139-5p and promoted hepatic stellate cells (HSCs) activation by directly inhibiting the expression of miR-139-5p. The co-localization of lncRNA NEAT1 with miR-139-5p was shown in the cytosols of activated HSCs. miR-139-5p upregulation could suppress the expression of ß-catenin. The overexpression of ß-catenin promoted HSCs activation. Moreover, we found that ß-catenin could interact with SOX9 promoted HSCs activation. Our further studies demonstrated that SOX9 could bind with the TGF-ß1 promoter and promoted the transcription activity of TGF-ß1. The upregulation of TGF-ß1 further promoted HSCs activation. In vivo study also suggested that lncRNA NEAT1 knockdown and miR-139-5p overexpression alleviated murine liver fibrosis. LncRNA NEAT1 exacerbated liver fibrosis by suppressing the expression of miR-139-5p. Collectively, our study suggested that miR-139-5p sponged by lncRNA NEAT1 regulated liver fibrosis via targeting ß-catenin/SOX9/TGF-ß1 Pathway.

6.
Front Immunol ; 11: 609060, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33692776

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a chronic liver disease associated with dysregulation of liver metabolism and inflammation. G-protein coupled bile acid receptor 1 (TGR5) is a cell surface receptor that is involved in multiple metabolic pathways. However, the functions of TGR5 in regulating macrophage innate immune activation in NASH remain unclear. Here, we found that TGR5 expression was decreased in liver tissues from humans and mice with NASH. Compared to wild type (WT) mice, TGR5-knockout (TGR5-/-) mice exhibited exacerbated liver damage, increased levels of proinflammatory factors, and enhanced M1 macrophage polarization. Moreover, TGR5 deficiency facilitated M1 macrophage polarization by promoting NLRP3 inflammasome activation and caspase-1 cleavage. Taken together, our findings revealed that TGR5 signaling attenuated liver steatosis and inflammation and inhibited NLRP3-mediated M1 macrophage polarization in NASH.


Asunto(s)
Inflamasomas/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Caspasa 1/metabolismo , Humanos , Inmunidad Innata/fisiología , Hígado/metabolismo , Activación de Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA