Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Genet ; 13(1): e1006536, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28095420

RESUMEN

N-methyl-D-aspartate receptors (NMDARs), ligand-gated ionotropic glutamate receptors, play key roles in normal brain development and various neurological disorders. Here we use standing variation data from the human population to assess which protein domains within NMDAR GluN1, GluN2A and GluN2B subunits show the strongest signal for being depleted of missense variants. We find that this includes the GluN2 pre-M1 helix and linker between the agonist-binding domain (ABD) and first transmembrane domain (M1). We then evaluate the functional changes of multiple missense mutations in the NMDAR pre-M1 helix found in children with epilepsy and developmental delay. We find mutant GluN1/GluN2A receptors exhibit prolonged glutamate response time course for channels containing 1 or 2 GluN2A-P552R subunits, and a slow rise time only for receptors with 2 mutant subunits, suggesting rearrangement of one GluN2A pre-M1 helix is sufficient for rapid activation. GluN2A-P552R and analogous mutations in other GluN subunits increased the agonist potency and slowed response time course, suggesting a functionally conserved role for this residue. Although there is no detectable change in surface expression or open probability for GluN2A-P552R, the prolonged response time course for receptors that contained GluN2A-P552R increased charge transfer for synaptic-like activation, which should promote excitotoxic damage. Transfection of cultured neurons with GluN2A-P552R prolonged EPSPs, and triggered pronounced dendritic swelling in addition to excitotoxicity, which were both attenuated by memantine. These data implicate the pre-M1 region in gating, provide insight into how different subunits contribute to gating, and suggest that mutations in the pre-M1 helix can compromise neuronal health. Evaluation of FDA-approved NMDAR inhibitors on the mutant NMDAR-mediated current response and neuronal damage provides a potential clinical path to treat individuals harboring similar mutations in NMDARs.


Asunto(s)
Activación del Canal Iónico , Mutación Missense , Proteínas del Tejido Nervioso/metabolismo , Enfermedades del Sistema Nervioso/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Células Cultivadas , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Memantina/farmacología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/fisiología , Dominios Proteicos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Xenopus
2.
J Gen Physiol ; 151(2): 200-213, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30541772

RESUMEN

Hyperpolarization-activated cyclic-nucleotide-modulated (HCN) channels are nonselective cation channels that regulate electrical activity in the heart and brain. Previous studies of mouse HCN2 (mHCN2) channels have shown that cAMP binds preferentially to and stabilizes these channels in the open state-a simple but elegant implementation of ligand-dependent gating. Distinct from mammalian isoforms, the sea urchin (spHCN) channel exhibits strong voltage-dependent inactivation in the absence of cAMP. Here, using fluorescently labeled cAMP molecules as a marker for cAMP binding, we report that the inactivated spHCN channel displays reduced cAMP binding compared with the closed channel. The reduction in cAMP binding is a voltage-dependent process but proceeds at a much slower rate than the movement of the voltage sensor. A single point mutation in the last transmembrane domain near the channel's gate, F459L, abolishes inactivation and concurrently reverses the response to hyperpolarizing voltage steps from a decrease to an increase in cAMP binding. ZD7288, an open channel blocker that interacts with a region close to the activation/inactivation gate, dampens the reduction of cAMP binding to inactivated spHCN channels. In addition, compared with closed and "locked" closed channels, increased cAMP binding is observed in channels purposely locked in the open state upon hyperpolarization. Thus, the order of cAMP-binding affinity, measured by the fluorescence signal from labeled cAMP, ranges from high in the open state to intermediate in the closed state to low in the inactivated state. Our work on spHCN channels demonstrates intricate state-dependent communications between the gate and ligand-binding domain and provides new mechanistic insight into channel inactivation/desensitization.


Asunto(s)
AMP Cíclico/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico , Animales , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Potenciales de la Membrana , Ratones , Mutación Puntual , Unión Proteica , Dominios Proteicos , Erizos de Mar , Xenopus
3.
J Gen Physiol ; 150(9): 1273-1286, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30042141

RESUMEN

Photochemically or metabolically generated singlet oxygen (1O2) reacts broadly with macromolecules in the cell. Because of its short lifetime and working distance, 1O2 holds potential as an effective and precise nanoscale tool for basic research and clinical practice. Here we investigate the modification of the spHCN channel that results from photochemically and chemically generated 1O2 The spHCN channel shows strong voltage-dependent inactivation in the absence of cAMP. In the presence of photosensitizers, short laser pulses transform the gating properties of spHCN by abolishing inactivation and increasing the macroscopic current amplitude. Alanine replacement of a histidine residue near the activation gate within the channel's pore abolishes key modification effects. Application of a variety of chemicals including 1O2 scavengers and 1O2 generators supports the involvement of 1O2 and excludes other reactive oxygen species. This study provides new understanding about the photodynamic modification of ion channels by 1O2 at the molecular level.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Oxígeno/metabolismo , Animales , AMP Cíclico , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Oocitos , Técnicas de Placa-Clamp , Mutación Puntual , Rosa Bengala , Erizos de Mar , Xenopus laevis
4.
J Gen Physiol ; 148(1): 65-76, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27353446

RESUMEN

Counting ion channels on cell membranes is of fundamental importance for the study of channel biophysics. Channel counting has thus far been tackled by classical approaches, such as radioactive labeling of ion channels with blockers, gating current measurements, and nonstationary noise analysis. Here, we develop a counting method based on patch-clamp fluorometry (PCF), which enables simultaneous electrical and optical recordings, and apply it to EGFP-tagged, hyperpolarization-activated and cyclic nucleotide-regulated (HCN) channels. We use a well-characterized and homologous cyclic nucleotide-gated (CNG) channel to establish the relationship between macroscopic fluorescence intensity and the total number of channels. Subsequently, based on our estimate of the total number of HCN channels, we determine the single-channel conductance of HCN1 and HCN2 to be 0.46 and 1.71 pS, respectively. Such a small conductance would present a technical challenge for traditional electrophysiology. This PCF-based technique provides an alternative method for counting particles on cell membranes, which could be applied to biophysical studies of other membrane proteins.


Asunto(s)
Membrana Celular/metabolismo , Fluorometría/métodos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Técnicas de Placa-Clamp , Animales , Canales Iónicos/metabolismo , Potenciales de la Membrana/fisiología , Xenopus laevis
5.
J Gen Physiol ; 143(5): 633-44, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24733837

RESUMEN

Singlet oxygen ((1)O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels--which conduct the hyperpolarization-activated current (Ih) and the voltage-insensitive instantaneous current (Iinst), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain--are subject to modification by (1)O2. To increase the site specificity of (1)O2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame (1)O2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves (1)O2, as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a (1)O2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, (1)O2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, (1)O2 modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for (1)O2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of Iinst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying (1)O2 modifications at the molecular level.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico , Canales de Potasio/metabolismo , Oxígeno Singlete/metabolismo , Potenciales de Acción , Secuencia de Aminoácidos , Animales , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Ratones , Datos de Secuencia Molecular , Mutación , Canales de Potasio/química , Canales de Potasio/genética , Estructura Terciaria de Proteína , Xenopus
6.
Structure ; 20(12): 2116-23, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23103389

RESUMEN

Hyperpolarization-activated, cAMP-gated (HCN) channels sense membrane potential and intracellular cAMP levels. A mutation identified in the cAMP binding domain (CNBD) of the human HCN4 channel, S672R, severely reduces the heart rate, but the molecular mechanism has been unclear. Our biochemical binding assays on isolated CNBD and patch-clamp recordings on the functional channel show that S672R reduces cAMP binding. The crystal structure of the mutant CNBD revealed no global changes except a disordered loop on the cAMP entry path. To address this localized structural perturbation at a whole protein level, we studied the activity-dependent dynamic interaction between cAMP and the functional channel using the patch-clamp fluorometry technique. S672R reduces the binding of cAMP to the channels in the resting state and significantly increases the unbinding rate during channel deactivation. This study on a disease-causing mutation illustrates the important roles played by the structural elements on the ligand entry-exit path in stabilizing the bound ligand in the binding pocket.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Proteínas Musculares/genética , Mutación Missense , Secuencias de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , AMP Cíclico/química , AMP Cíclico/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Polarización de Fluorescencia , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Cinética , Modelos Moleculares , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio , Unión Proteica , Estructura Terciaria de Proteína , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA