Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 39(8): e102166, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32134139

RESUMEN

Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme with transamidating activity. We report here that both expression and activity of TG2 are enhanced in mammalian epithelial cells infected with the obligate intracellular bacteria Chlamydia trachomatis. Genetic or pharmacological inhibition of TG2 impairs bacterial development. We show that TG2 increases glucose import by up-regulating the transcription of the glucose transporter genes GLUT-1 and GLUT-3. Furthermore, TG2 activation drives one specific glucose-dependent pathway in the host, i.e., hexosamine biosynthesis. Mechanistically, we identify the glucosamine:fructose-6-phosphate amidotransferase (GFPT) among the substrates of TG2. GFPT modification by TG2 increases its enzymatic activity, resulting in higher levels of UDP-N-acetylglucosamine biosynthesis and protein O-GlcNAcylation. The correlation between TG2 transamidating activity and O-GlcNAcylation is disrupted in infected cells because host hexosamine biosynthesis is being exploited by the bacteria, in particular to assist their division. In conclusion, our work establishes TG2 as a key player in controlling glucose-derived metabolic pathways in mammalian cells, themselves hijacked by C. trachomatis to sustain their own metabolic needs.


Asunto(s)
Infecciones por Chlamydia/metabolismo , Chlamydia trachomatis/fisiología , Proteínas de Unión al GTP/metabolismo , Regulación Enzimológica de la Expresión Génica , Glucosamina/metabolismo , Glucosa/metabolismo , Hexosaminas/biosíntesis , Transglutaminasas/metabolismo , Animales , Transporte Biológico , Infecciones por Chlamydia/microbiología , Células Epiteliales/metabolismo , Fibroblastos , Fructosafosfatos/metabolismo , Proteínas de Unión al GTP/genética , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas/genética
2.
J Biol Chem ; 298(9): 102338, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931114

RESUMEN

The obligate intracellular bacteria Chlamydia trachomatis obtain all nutrients from the cytoplasm of their epithelial host cells and stimulate glucose uptake by these cells. They even hijack host ATP, exerting a strong metabolic pressure on their host at the peak of the proliferative stage of their developmental cycle. However, it is largely unknown whether infection modulates the metabolism of the host cell. Also, the reliance of the bacteria on host metabolism might change during their progression through their biphasic developmental cycle. Herein, using primary epithelial cells and 2 cell lines of nontumoral origin, we showed that between the 2 main ATP-producing pathways of the host, oxidative phosphorylation (OxPhos) remained stable and glycolysis was slightly increased. Inhibition of either pathway strongly reduced bacterial proliferation, implicating that optimal bacterial growth required both pathways to function at full capacity. While we found C. trachomatis displayed some degree of energetic autonomy in the synthesis of proteins expressed at the onset of infection, functional host glycolysis was necessary for the establishment of early inclusions, whereas OxPhos contributed less. These observations correlated with the relative contributions of the pathways in maintaining ATP levels in epithelial cells, with glycolysis contributing the most. Altogether, this work highlights the dependence of C. trachomatis on both host glycolysis and OxPhos for efficient bacterial replication. However, ATP consumption appears at equilibrium with the normal production capacity of the host and the bacteria, so that no major shift between these pathways is required to meet bacterial needs.


Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Células Epiteliales , Glucólisis , Interacciones Huésped-Patógeno , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Infecciones por Chlamydia/metabolismo , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/crecimiento & desarrollo , Chlamydia trachomatis/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Glucosa/metabolismo , Células HeLa , Humanos
3.
Proc Natl Acad Sci U S A ; 117(43): 26784-26794, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33055216

RESUMEN

The obligate intracellular bacteria Chlamydia trachomatis, the causative agent of trachoma and sexually transmitted diseases, multiply in a vacuolar compartment, the inclusion. From this niche, they secrete "effector" proteins, that modify cellular activities to enable bacterial survival and proliferation. Here, we show that the host autophagy-related protein 16-1 (ATG16L1) restricts inclusion growth and that this effect is counteracted by the secretion of the bacterial effector CT622/TaiP (translocated ATG16L1 interacting protein). ATG16L1 is mostly known for its role in the lipidation of the human homologs of ATG8 (i.e., LC3 and homologs) on double membranes during autophagy as well as on single membranes during LC3-associated phagocytosis and other LC3-lipidation events. Unexpectedly, the LC3-lipidation-related functions of ATG16L1 are not required for restricting inclusion development. We show that the carboxyl-terminal domain of TaiP exposes a mimic of an eukaryotic ATG16L1-binding motif that binds to ATG16L1's WD40 domain. By doing so, TaiP prevents ATG16L1 interaction with the integral membrane protein TMEM59 and allows the rerouting of Rab6-positive compartments toward the inclusion. The discovery that one bacterial effector evolved to target ATG16L1's engagement in intracellular traffic rather than in LC3 lipidation brings this "secondary" activity of ATG16L1 in full light and emphasizes its importance for maintaining host cell homeostasis.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Chlamydia trachomatis/fisiología , Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Bacterianas/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Unión al GTP rab/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(5): 2634-2644, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964834

RESUMEN

During invasion of host cells, Chlamydia pneumoniae secretes the effector protein CPn0678, which facilitates internalization of the pathogen by remodeling the target cell's plasma membrane and recruiting sorting nexin 9 (SNX9), a central multifunctional endocytic scaffold protein. We show here that the strongly amphipathic N-terminal helix of CPn0678 mediates binding to phospholipids in both the plasma membrane and synthetic membranes, and is sufficient to induce extensive membrane tubulations. CPn0678 interacts via its conserved C-terminal polyproline sequence with the Src homology 3 domain of SNX9. Thus, SNX9 is found at bacterial entry sites, where C. pneumoniae is internalized via EGFR-mediated endocytosis. Moreover, depletion of human SNX9 significantly reduces internalization, whereas ectopic overexpression of CPn0678-GFP results in a dominant-negative effect on endocytotic processes in general, leading to the uptake of fewer chlamydial elementary bodies and diminished turnover of EGFR. Thus, CPn0678 is an early effector involved in regulating the endocytosis of C. pneumoniae in an EGFR- and SNX9-dependent manner.


Asunto(s)
Membrana Celular/química , Infecciones por Chlamydia/microbiología , Chlamydia/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/microbiología , Infecciones por Chlamydia/genética , Infecciones por Chlamydia/metabolismo , Infecciones por Chlamydia/fisiopatología , Endocitosis , Interacciones Huésped-Patógeno , Humanos , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo
5.
Curr Top Microbiol Immunol ; 412: 35-58, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-27197644

RESUMEN

The lifestyle of Chlamydiae is unique: the bacteria alternate between two morphologically distinct forms, an infectious non-replicative elementary body (EB), and a replicative, non-infectious reticulate body (RB). This review focuses on recent advances in understanding the structure and function of the infectious form of the best-studied member of the phylum, the human pathogen Chlamydia trachomatis. Once considered as an inert particle of little functional capacity, the EB is now perceived as a sophisticated entity that encounters at least three different environments during each infectious cycle. We review current knowledge on its composition and morphology, and emerging metabolic activities. These features confer resistance to the extracellular environment, the ability to penetrate a host cell and ultimately enable the EB to establish a niche enabling bacterial survival and growth. The bacterial and host molecules involved in these processes are beginning to emerge.


Asunto(s)
Chlamydia trachomatis/citología , Chlamydia trachomatis/patogenicidad , Chlamydia trachomatis/metabolismo , Humanos
6.
Plant Cell ; 25(1): 7-21, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23371946

RESUMEN

Under the endosymbiont hypothesis, over a billion years ago a heterotrophic eukaryote entered into a symbiotic relationship with a cyanobacterium (the cyanobiont). This partnership culminated in the plastid that has spread to forms as diverse as plants and diatoms. However, why primary plastid acquisition has not been repeated multiple times remains unclear. Here, we report a possible answer to this question by showing that primary plastid endosymbiosis was likely to have been primed by the secretion in the host cytosol of effector proteins from intracellular Chlamydiales pathogens. We provide evidence suggesting that the cyanobiont might have rescued its afflicted host by feeding photosynthetic carbon into a chlamydia-controlled assimilation pathway.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydiales/fisiología , Cianobacterias/fisiología , Plantas/microbiología , Plastidios/genética , Simbiosis , Proteínas Bacterianas/genética , Evolución Biológica , Carbono/metabolismo , Chlamydiales/enzimología , Chlamydiales/genética , Biología Computacional , Cianobacterias/genética , Genoma de Planta/genética , Glucógeno/metabolismo , Interacciones Huésped-Patógeno , Isoamilasa/genética , Isoamilasa/metabolismo , Fotosíntesis , Filogenia , Proteínas de Plantas/genética , Plantas/genética , Plastidios/enzimología
7.
J Biol Chem ; 289(36): 25199-210, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25056950

RESUMEN

Although the actin network is commonly hijacked by pathogens, there are few reports of parasites targeting microtubules. The proposed member of the LcrE protein family from some Chlamydia species (e.g. pCopN from C. pneumoniae) binds tubulin and inhibits microtubule assembly in vitro. From the pCopN structure and its similarity with that of MxiC from Shigella, we definitively confirm CopN as the Chlamydia homolog of the LcrE family of bacterial proteins involved in the regulation of type III secretion. We have also investigated the molecular basis for the pCopN effect on microtubules. We show that pCopN delays microtubule nucleation and acts as a pure tubulin-sequestering protein at steady state. It targets the ß subunit interface involved in the tubulin longitudinal self-association in a way that inhibits nucleotide exchange. pCopN contains three repetitions of a helical motif flanked by disordered N- and C-terminal extensions. We have identified the pCopN minimal tubulin-binding region within the second and third repeats. Together with the intriguing observation that C. trachomatis CopN does not bind tubulin, our data support the notion that, in addition to the shared function of type III secretion regulation, these proteins have evolved different functions in the host cytosol. Our results provide a mechanistic framework for understanding the C. pneumoniae CopN-specific inhibition of microtubule assembly.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydophila pneumoniae/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Chlamydophila pneumoniae/genética , Cristalografía por Rayos X , Microtúbulos/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Ovinos , Espectrometría de Fluorescencia , Tubulina (Proteína)/química
8.
Mol Biol Evol ; 31(11): 2890-904, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25069652

RESUMEN

Gene loss, gain, and transfer play an important role in shaping the genomes of all organisms; however, the interplay of these processes in isolated populations, such as in obligate intracellular bacteria, is less understood. Despite a general trend towards genome reduction in these microbes, our phylogenomic analysis of the phylum Chlamydiae revealed that within the family Parachlamydiaceae, gene family expansions have had pronounced effects on gene content. We discovered that the largest gene families within the phylum are the result of rapid gene birth-and-death evolution. These large gene families are comprised of members harboring eukaryotic-like ubiquitination-related domains, such as F-box and BTB-box domains, marking the largest reservoir of these proteins found among bacteria. A heterologous type III secretion system assay suggests that these proteins function as effectors manipulating the host cell. The large disparity in copy number of members in these families between closely related organisms suggests that nonadaptive processes might contribute to the evolution of these gene families. Gene birth-and-death evolution in concert with genomic drift might represent a previously undescribed mechanism by which isolated bacterial populations diversify.


Asunto(s)
Sistemas de Secreción Bacterianos/genética , Chlamydiaceae/genética , Evolución Molecular , Genoma Bacteriano , Familia de Multigenes , Ubiquitinación/genética , Chlamydiaceae/clasificación , Chlamydiaceae/metabolismo , Dosificación de Gen , Variación Genética , Modelos Genéticos , Filogenia , Estructura Terciaria de Proteína
9.
Cell Microbiol ; 15(12): 2064-79, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23869922

RESUMEN

Chlamydia are obligate intracellular pathogens. Upon contact with the host, they use type III secretion to deliver proteins into the cell, thereby triggering actin-dependent entry and establishing the infection. We observed that Chlamydia caviae elicited a local and transient accumulation of ubiquitinated proteins at the entry sites, which disappeared within 20 min. We investigated the mechanism for the rapid clearance of ubiquitin. We showed that the OTU-like domain containing protein CCA00261, predicted to have deubiquitinase activity, was detected in infectious particles and was a type III secretion effector. This protein is present in several Chlamydia strains, including the human pathogen Chlamydia pneumoniae, and we further designate it as ChlaOTU. We demonstrated that ChlaOTU bound ubiquitin and NDP52, and we mapped these interactions to distinct domains. NDP52 was recruited to Chlamydia entry sites and was dispensable for infection and for bacterial growth. ChlaOTU functioned as a deubiquitinase in vitro. Heterologousexpression of ChlaOTU reduced ubiquitin accumulation at the entry sites, while a catalytic mutant of the deubiquitinase activity had the opposite effect. Altogether, we have identified a novel secreted protein of chlamydiae. ChlaOTU targets both ubiquitin and NDP52 and likely participates in the clearance of ubiquitin at the invasion sites.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Infecciones por Chlamydia/transmisión , Chlamydia/metabolismo , Proteínas Nucleares/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Secuencia de Aminoácidos , Línea Celular , Infecciones por Chlamydia/microbiología , Células HEK293 , Células HeLa , Humanos , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño , Ubiquitina/metabolismo
10.
Mol Microbiol ; 85(1): 164-78, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22624979

RESUMEN

Chlamydiae are obligate intracellular bacterial pathogens that have extensively reduced their genome in adapting to the intracellular environment. The chlamydial genome contains only three annotated cell division genes and lacks ftsZ. How this obligate intracellular pathogen divides is uncharacterized. Chlamydiae contain two high-molecular-weight (HMW) penicillin binding proteins (Pbp) implicated in peptidoglycan synthesis, Pbp2 and Pbp3/FtsI. We show here, using HMW Pbp-specific penicillin derivatives, that both Pbp2 and Pbp3 are essential for chlamydial cell division. Ultrastructural analyses of antibiotic-treated cultures revealed distinct phenotypes: Pbp2 inhibition induced internal cell bodies within a single outer membrane whereas Pbp3 inhibition induced elongated phenotypes with little internal division. Each HMW Pbp interacts with the Chlamydia cell division protein FtsK. Chlamydiae are coccoid yet contain MreB, a rod shape-determining protein linked to Pbp2 in bacilli. Using MreB-specific antibiotics, we show that MreB is essential for chlamydial growth and division. Importantly, co-treatment with MreB-specific and Pbp-specific antibiotics resulted in the MreB-inhibited phenotype, placing MreB upstream of Pbp function in chlamydial cell division. Finally, we showed that MreB also interacts with FtsK. We propose that, in Chlamydia, MreB acts as a central co-ordinator at the division site to substitute for the lack of FtsZ in this bacterium.


Asunto(s)
División Celular , Chlamydia trachomatis/citología , Proteínas de Unión a las Penicilinas/fisiología , Chlamydia trachomatis/genética , Proteínas del Citoesqueleto/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Unión a las Penicilinas/genética
11.
PLoS Pathog ; 6(7): e1000995, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20657819

RESUMEN

Sequence analysis of the genome of the strict intracellular pathogen Chlamydia trachomatis revealed the presence of a SET domain containing protein, proteins that primarily function as histone methyltransferases. In these studies, we demonstrated secretion of this protein via a type III secretion mechanism. During infection, the protein is translocated to the host cell nucleus and associates with chromatin. We therefore named the protein nuclear effector (NUE). Expression of NUE in mammalian cells by transfection reconstituted nuclear targeting and chromatin association. In vitro methylation assays confirmed NUE is a histone methyltransferase that targets histones H2B, H3 and H4 and itself (automethylation). Mutants deficient in automethylation demonstrated diminished activity towards histones suggesting automethylation functions to enhance enzymatic activity. Thus, NUE is secreted by Chlamydia, translocates to the host cell nucleus and has enzymatic activity towards eukaryotic substrates. This work is the first description of a bacterial effector that directly targets mammalian histones.


Asunto(s)
Chlamydia trachomatis/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Bacterianas/fisiología , Infecciones por Chlamydia , Chlamydia trachomatis/patogenicidad , Cromatina/metabolismo , Histona Metiltransferasas , Metilación , Transporte de Proteínas
12.
FEBS J ; 289(7): 1779-1800, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33752267

RESUMEN

Atg16-like (ATG16L) proteins were identified in higher eukaryotes for their resemblance to Atg16, a yeast protein previously characterized as a subunit of the Atg12-Atg5/Atg16 complex. In yeast, this complex catalyzes the lipidation of Atg8 on pre-autophagosomal structures and is therefore required for the formation of autophagosomes. In higher eukaryotes, ATG16L1 is also almost exclusively present as part of an ATG12-ATG5/ATG16L1 complex and has the same essential function in autophagy. However, ATG16L1 is three times bigger than Atg16. It displays, in particular, a carboxy-terminal extension, including a WD40 domain, which provides a platform for interaction with a variety of proteins, and allows for the recruitment of the ATG12-ATG5/ATG16L1 complex to membranes under different contexts. Furthermore, detailed analyses at the cellular level have revealed that some of the ATG16L1-driven activities are independent of the lipidation reaction catalyzed by the ATG12-ATG5/ATG16L1 complex. At the organ level, the use of mice that are hypomorphic for Atg16l1, or with cell-specific ablation of its expression, revealed a large panel of consequences of ATG16L1 dysfunctions. In this review, we recapitulate the current knowledge on ATG16L1 expression and functions. We emphasize, in particular, how it broadly acts as a brake on inflammation, thereby contributing to maintaining cell homeostasis. We also report on independent studies that converge to show that ATG16L1 is an important player in the regulation of intracellular traffic. Overall, autophagy-independent functions of ATG16L1 probably account for more of the phenotypes associated with ATG16L1 deficiencies than currently appreciated.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Autofagia , Proteínas Asociadas a Microtúbulos , Animales , Autofagia/genética , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Homeostasis/genética , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo
13.
Front Cell Infect Microbiol ; 12: 866729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795184

RESUMEN

The obligate intracellular bacteria Chlamydia trachomatis store glycogen in the lumen of the vacuoles in which they grow. Glycogen catabolism generates glucose-1-phosphate (Glc1P), while the bacteria can take up only glucose-6-phosphate (Glc6P). We tested whether the conversion of Glc1P into Glc6P could be catalyzed by a phosphoglucomutase (PGM) of host or bacterial origin. We found no evidence for the presence of the host PGM in the vacuole. Two C. trachomatis proteins, CT295 and CT815, are potential PGMs. By reconstituting the reaction using purified proteins, and by complementing PGM deficient fibroblasts, we demonstrated that only CT295 displayed robust PGM activity. Intriguingly, we showed that glycogen accumulation in the lumen of the vacuole of a subset of Chlamydia species (C. trachomatis, C. muridarum, C. suis) correlated with the presence, in CT295 orthologs, of a secretion signal recognized by the type three secretion (T3S) machinery of Shigella. C. caviae and C. pneumoniae do not accumulate glycogen, and their CT295 orthologs lack T3S signals. In conclusion, we established that the conversion of Glc1P into Glc6P was accomplished by a bacterial PGM, through the acquisition of a T3S signal in a "housekeeping" protein. Acquisition of this signal likely contributed to shaping glycogen metabolism within Chlamydiaceae.


Asunto(s)
Chlamydia trachomatis , Fosfoglucomutasa , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucógeno/metabolismo , Fosfoglucomutasa/genética , Fosfoglucomutasa/metabolismo , Vacuolas/metabolismo
14.
J Cell Biol ; 221(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36169638

RESUMEN

Intracellular trafficking is mediated by transport carriers that originate by membrane remodeling from donor organelles. Tubular carriers contribute to the flux of membrane lipids and proteins to acceptor organelles, but how lipids and proteins impose a tubular geometry on the carriers is incompletely understood. Using imaging approaches on cells and in vitro membrane systems, we show that phosphatidylinositol-4-phosphate (PI4P) and biogenesis of lysosome-related organelles complex 1 (BLOC-1) govern the formation, stability, and functions of recycling endosomal tubules. In vitro, BLOC-1 binds and tubulates negatively charged membranes, including those containing PI4P. In cells, endosomal PI4P production by type II PI4-kinases is needed to form and stabilize BLOC-1-dependent recycling endosomal tubules. Decreased PI4KIIs expression impairs the recycling of endosomal cargoes and the life cycles of intracellular pathogens such as Chlamydia bacteria and influenza virus that exploit the membrane dynamics of recycling endosomes. This study demonstrates how a phospholipid and a protein complex coordinate the remodeling of cellular membranes into functional tubules.


Asunto(s)
Endosomas , Membranas Intracelulares , Péptidos y Proteínas de Señalización Intracelular , Fosfatos de Fosfatidilinositol , Membrana Celular/metabolismo , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transporte de Proteínas
15.
Infect Immun ; 79(2): 571-80, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21078856

RESUMEN

Chlamydiae are Gram-negative, obligate intracellular pathogens that replicate within a membrane-bounded compartment termed an inclusion. Throughout their development, they actively modify the eukaryotic environment. The type III secretion (TTS) system is the main process by which the bacteria translocate effector proteins into the inclusion membrane and the host cell cytoplasm. Here we describe a family of type III secreted effectors that are present in all pathogenic chlamydiae and absent in the environment-related species. It is defined by a common domain of unknown function, DUF582, that is present in four or five proteins in each Chlamydiaceae species. We show that the amino-terminal extremity of DUF582 proteins functions as a TTS signal. DUF582 proteins from C. trachomatis CT620, CT621, and CT711 are expressed at the middle and late phases of the infectious cycle. Immunolocalization further revealed that CT620 and CT621 are secreted into the host cell cytoplasm, as well as within the lumen of the inclusion, where they do not associate with bacterial markers. Finally, we show that DUF582 proteins are present in nuclei of infected cells, suggesting that members of the DUF582 family of effector proteins may target nuclear cell functions. The expansion of this family of proteins in pathogenic chlamydiae and their conservation among the different species suggest that they play important roles in the infectious cycle.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydiaceae/metabolismo , Secuencia de Aminoácidos , Chlamydiaceae/genética , Chlamydiaceae/patogenicidad , Citoplasma , Regulación Bacteriana de la Expresión Génica/fisiología , Células HeLa , Humanos , Epidemiología Molecular , Datos de Secuencia Molecular , Transporte de Proteínas
16.
BMC Genomics ; 12: 109, 2011 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-21324157

RESUMEN

BACKGROUND: Chlamydiae are obligate intracellular bacteria that multiply in a vacuolar compartment, the inclusion. Several chlamydial proteins containing a bilobal hydrophobic domain are translocated by a type III secretion (TTS) mechanism into the inclusion membrane. They form the family of Inc proteins, which is specific to this phylum. Based on their localization, Inc proteins likely play important roles in the interactions between the microbe and the host. In this paper we sought to identify and analyze, using bioinformatics tools, all putative Inc proteins in published chlamydial genomes, including an environmental species. RESULTS: Inc proteins contain at least one bilobal hydrophobic domain made of two transmembrane helices separated by a loop of less than 30 amino acids. Using bioinformatics tools we identified 537 putative Inc proteins across seven chlamydial proteomes. The amino-terminal segment of the putative Inc proteins was recognized as a functional TTS signal in 90% of the C. trachomatis and C. pneumoniae sequences tested, validating the data obtained in silico. We identified a macro domain in several putative Inc proteins, and observed that Inc proteins are enriched in segments predicted to form coiled coils. A surprisingly large proportion of the putative Inc proteins are not constitutively translocated to the inclusion membrane in culture conditions. CONCLUSIONS: The Inc proteins represent 7 to 10% of each proteome and show a great degree of sequence diversity between species. The abundance of segments with a high probability for coiled coil conformation in Inc proteins support the hypothesis that they interact with host proteins. While the large majority of Inc proteins possess a functional TTS signal, less than half may be constitutively translocated to the inclusion surface in some species. This suggests the novel finding that translocation of Inc proteins may be regulated by as-yet undetermined mechanisms.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos , Chlamydia/genética , Genoma Bacteriano , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , Biología Computacional , Células HeLa , Humanos , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteoma/genética , Alineación de Secuencia
17.
ACS Synth Biol ; 10(12): 3445-3460, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34809429

RESUMEN

Here, we enhanced the popular yeast display method by multiple rounds of DNA and protein engineering. We introduced surface exposure-tailored reporters, eUnaG2 and DnbALFA, creating a new platform of C and N terminal fusion vectors. The optimization of eUnaG2 resulted in five times brighter fluorescence and 10 °C increased thermostability than UnaG. The optimized DnbALFA has 10-fold the level of expression of the starting protein. Following this, different plasmids were developed to create a complex platform allowing a broad range of protein expression organizations and labeling strategies. Our platform showed up to five times better separation between nonexpressing and expressing cells compared with traditional pCTcon2 and c-myc labeling, allowing for fewer rounds of selection and achieving higher binding affinities. Testing 16 different proteins, the enhanced system showed consistently stronger expression signals over c-myc labeling. In addition to gains in simplicity, speed, and cost-effectiveness, new applications were introduced to monitor protein surface exposure and protein retention in the secretion pathway that enabled successful protein engineering of hard-to-express proteins. As an example, we show how we optimized the WD40 domain of the ATG16L1 protein for yeast surface and soluble bacterial expression, starting from a nonexpressing protein. As a second example, we show how using the here-presented enhanced yeast display method we rapidly selected high-affinity binders toward two protein targets, demonstrating the simplicity of generating new protein-protein interactions. While the methodological changes are incremental, it results in a qualitative enhancement in the applicability of yeast display for many applications.


Asunto(s)
Ingeniería de Proteínas , Saccharomyces cerevisiae , Ingeniería de Proteínas/métodos , Transporte de Proteínas , Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Sci Rep ; 11(1): 5848, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712643

RESUMEN

The tumoral origin and extensive passaging of HeLa cells, a most commonly used cervical epithelial cell line, raise concerns on their suitability to study the cell responses to infection. The present study was designed to isolate primary epithelial cells from human ectocervix explants and characterize their susceptibility to C. trachomatis infection. We achieved a high purity of isolation, assessed by the expression of E-cadherin and cytokeratin 14. The infectious progeny in these primary epithelial cells was lower than in HeLa cells. We showed that the difference in culture medium, and the addition of serum in HeLa cultures, accounted for a large part of these differences. However, all things considered the primary ectocervical epithelial cells remained less permissive than HeLa cells to C. trachomatis serovar L2 or D development. Finally, the basal level of transcription of genes coding for pro-inflammatory cytokines was globally higher in primary epithelial cells than in HeLa cells. Transcription of several pro-inflammatory genes was further induced by infection with C. trachomatis serovar L2 or serovar D. In conclusion, primary epithelial cells have a strong capacity to mount an inflammatory response to Chlamydia infection. Our simplified purification protocol from human explants should facilitate future studies to understand the contribution of this response to limiting the spread of the pathogen to the upper female genital tract.


Asunto(s)
Cuello del Útero/patología , Chlamydia trachomatis/fisiología , Células Epiteliales/microbiología , Células Epiteliales/patología , Inflamación/patología , Proliferación Celular , Separación Celular , Forma de la Célula , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/crecimiento & desarrollo , Células Epiteliales/inmunología , Femenino , Fibroblastos/microbiología , Células HeLa , Humanos , Inmunidad
19.
Infect Immun ; 78(1): 80-7, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19858301

RESUMEN

Reactive oxygen species (ROS) are many-faceted compounds involved in cell defense against pathogens, as well as in cell signaling. Their involvement in the response to infection in epithelial cells remains poorly documented. Here, we investigated the production of ROS during infection with Chlamydia trachomatis, a strict intracellular pathogen, in HeLa cells. C. trachomatis induced a transient increase in the ROS level within a few hours, followed by a return to basal level 9 hours after infection. At this time point, the host enzyme dedicated to ROS production, NADPH oxidase, could no longer be activated by external stimuli, such as interleukin-1beta. In addition, Rac, a regulatory subunit of the NADPH oxidase complex, was relocated to the membrane of the compartment in which the bacteria develop, the inclusion, while other subunits were not. Altogether, these results indicate that C. trachomatis infection elicits the production of ROS and that the bacteria rapidly target the activity of NADPH oxidase to shut it down. Prevention of ROS production at the onset of the bacterial developmental cycle might delay the host response to infection.


Asunto(s)
Chlamydia trachomatis/fisiología , Células Epiteliales/microbiología , Especies Reactivas de Oxígeno/metabolismo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , NADPH Oxidasas/metabolismo , Estrés Oxidativo
20.
PLoS Pathog ; 4(3): e1000022, 2008 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-18369472

RESUMEN

Many intracellular pathogens rely on host cell membrane compartments for their survival. The strategies they have developed to subvert intracellular trafficking are often unknown, and SNARE proteins, which are essential for membrane fusion, are possible targets. The obligate intracellular bacteria Chlamydia replicate within an intracellular vacuole, termed an inclusion. A large family of bacterial proteins is inserted in the inclusion membrane, and the role of these inclusion proteins is mostly unknown. Here we identify SNARE-like motifs in the inclusion protein IncA, which are conserved among most Chlamydia species. We show that IncA can bind directly to several host SNARE proteins. A subset of SNAREs is specifically recruited to the immediate vicinity of the inclusion membrane, and their accumulation is reduced around inclusions that lack IncA, demonstrating that IncA plays a predominant role in SNARE recruitment. However, interaction with the SNARE machinery is probably not restricted to IncA as at least another inclusion protein shows similarities with SNARE motifs and can interact with SNAREs. We modelled IncA's association with host SNAREs. The analysis of intermolecular contacts showed that the IncA SNARE-like motif can make specific interactions with host SNARE motifs similar to those found in a bona fide SNARE complex. Moreover, point mutations in the central layer of IncA SNARE-like motifs resulted in the loss of binding to host SNAREs. Altogether, our data demonstrate for the first time mimicry of the SNARE motif by a bacterium.


Asunto(s)
Proteínas Bacterianas/genética , Chlamydia trachomatis/fisiología , Proteínas de la Membrana/genética , Imitación Molecular , Proteínas SNARE/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Chlamydia trachomatis/patogenicidad , Chlamydia trachomatis/ultraestructura , Interacciones Huésped-Patógeno/fisiología , Cuerpos de Inclusión/microbiología , Cuerpos de Inclusión/ultraestructura , Proteínas de la Membrana/metabolismo , ARN Interferente Pequeño/farmacología , Proteínas SNARE/metabolismo , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestructura , Vacuolas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA