RESUMEN
BACKGROUND: Left ventricular stroke work index (LVSWI) and cardiac power index (CPI) account for the haemodynamic load of the left ventricle and are promising prognostic values in cardiogenic shock. However, accurately and non-invasively measuring these parameters during veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is challenging and potentially biased by the extracorporeal circulation. This study aimed to investigate, in an ovine model of cardiogenic shock, whether Pressure-Strain Product (PSP), a novel speckle-tracking echocardiography parameter, (1) can correlate with pressure-volume catheter-based LVSWI and CPI, and (2) can be load-independent during the flow modification of V-A ECMO. METHODS: Nine Dorset-cross ewes (51 ± 4 kg) were included. After cardiogenic shock was induced, full support V-A ECMO (X L/min based on 60 mL/kg/min) commenced. At seven time points during 24-h observation, echocardiographic parameters as well as pressure-volume catheter-based LVSWI and CPI were simultaneously measured with X and following X-1 L/min of ECMO flow. PSP was calculated by multiplying global circumferential strain or global radial strain, and mean arterial pressure, for PSPcirc or PSPrad, respectively. RESULTS: PSPcirc showed a stronger correlation with LVSWI (correlation coefficient, CC = .360, p < .001) and CPI (CC = .283, p < .001) than other echocardiographic parameters. The predictability of PSPcirc for pressure-volume catheter-based LVSWI (AUC .82) and CPI (AUC .80) was also higher than other echocardiographic parameters. No statistically significant differences were identified between the two ECMO flow variations in PSPcirc (p = .558). CONCLUSIONS: A novel echocardiographic parameter, PSP, may non-invasively predict pressure-volume catheter-based LVSWI and CPI in a load-independent manner in a cardiogenic shock supported by V-A ECMO.
Asunto(s)
Ecocardiografía , Oxigenación por Membrana Extracorpórea , Choque Cardiogénico , Oxigenación por Membrana Extracorpórea/métodos , Choque Cardiogénico/terapia , Choque Cardiogénico/fisiopatología , Choque Cardiogénico/diagnóstico por imagen , Animales , Ovinos , Ecocardiografía/métodos , Femenino , Función Ventricular Izquierda/fisiología , Volumen Sistólico/fisiología , Hemodinámica/fisiologíaRESUMEN
BACKGROUND: The commonest echocardiographic measurement, left ventricular ejection fraction, can not necessarily predict mortality of recipients following heart transplantation potentially due to afterload dependency. Afterload-independent left ventricular stroke work index (LVSWI) is alternatively recommended by the current guideline; however, pulmonary artery catheters are rarely inserted in organ donors in most jurisdictions. We propose a novel non-invasive echocardiographic parameter, Pressure-Strain Product (PSP), as a potential surrogate of catheter-based LVSWI. This study aimed to investigate if PSP could correlate with catheter-based LVSWI in an ovine model of brain stem death (BSD) donors. The association between PSP and myocardial mitochondrial function in the post-transplant hearts was also evaluated. METHODS: Thirty-one female sheep (weight 47 ± 5 kg) were divided into two groups; BSD (n = 15), and sham neurologic injury (n = 16). Echocardiographic parameters including global circumferential strain (GCS) and global radial strain (GRS) and pulmonary artery catheter-based LVSWI were simultaneously measured at 8-timepoints during 24-h observation. PSP was calculated as a product of GCS or GRS, and mean arterial pressure for PSPcirc or PSPrad, respectively. Myocardial mitochondrial function was evaluated following 6-h observation after heart transplantation. RESULTS: In BSD donor hearts, PSPcirc (n = 96, rho = .547, p < .001) showed the best correlation with LVSWI among other echocardiographic parameters. PSPcirc returned AUC of .825 to distinguish higher values of cardiomyocyte mitochondrial function (cut-off point; mean value of complex 1,2 O2 Flux) in post-transplant hearts, which was greater than other echocardiographic parameters. CONCLUSIONS: PSPcirc could be used as a surrogate of catheter-based LVSWI reflecting mitochondrial function.
Asunto(s)
Muerte Encefálica , Ecocardiografía , Trasplante de Corazón , Volumen Sistólico , Animales , Femenino , Muerte Encefálica/fisiopatología , Muerte Encefálica/diagnóstico por imagen , Ovinos , Volumen Sistólico/fisiología , Función Ventricular Izquierda/fisiología , Donantes de Tejidos , Mitocondrias Cardíacas/metabolismoRESUMEN
INTRODUCTION: Use of doxorubicin, an anthracycline chemotherapeutic agent has been associated with late-occurring cardiac toxicities. Detection of early-occurring cardiac effects of cancer chemotherapy is essential to prevent occurrence of adverse events including toxicity, myocardial dysfunction, and death. OBJECTIVE: To investigate the prevalence of elevated cardiac troponin T (cTnT) and associated factors of myocardial injury in children on doxorubicin cancer chemotherapy. METHODS: Design: A cross-sectional study. SETTING AND SUBJECTS: A hospital-based study conducted on children aged 1-month to 12.4-years who had a diagnosis of cancer and were admitted at Kenyatta National Hospital (KNH). INTERVENTIONS AND OUTCOMES: The patients underwent Echocardiography (ECHO) before their scheduled chemotherapy infusion. Twenty-four (24) hours after the chemotherapy infusion the patients had an evaluation of the serum cardiac troponin T (cTnT) and a repeat ECHO. Myocardial injury was defined as cTnT level > 0.014 ng/ml or a Fractional Shortening (FS) of < 29% on ECHO. RESULTS: One hundred (100) children were included in the final analysis. Thirty-two percent (32%) of the study population had an elevated cTnT. A cumulative doxorubicin dose of > 175 mg/m2 was significantly associated with and elevated cTnT (OR, 10.76; 95% CI, 1.18-97.92; p = 0.035). Diagnosis of nephroblastoma was also associated with an elevated cTnT (OR, 3.0; 95% CI, 1.23-7.26) but not statistically significant (p = 0.105). Nine percent (9%) of the participants had echocardiographic evidence of myocardial injury. CONCLUSION: When compared to echocardiography, elevated levels of cTnT showed a higher association with early-occurring chemotherapy-induced myocardial injury among children on cancer treatment at a tertiary teaching and referral hospital in Kenya.
Asunto(s)
Antibióticos Antineoplásicos , Biomarcadores , Cardiotoxicidad , Doxorrubicina , Neoplasias , Centros de Atención Terciaria , Troponina T , Humanos , Estudios Transversales , Masculino , Femenino , Doxorrubicina/efectos adversos , Niño , Kenia/epidemiología , Troponina T/sangre , Preescolar , Antibióticos Antineoplásicos/efectos adversos , Lactante , Neoplasias/tratamiento farmacológico , Neoplasias/sangre , Factores de Riesgo , Biomarcadores/sangre , Prevalencia , Factores de Tiempo , Regulación hacia Arriba , Cardiopatías/inducido químicamente , Cardiopatías/epidemiología , Cardiopatías/diagnóstico por imagen , Cardiopatías/diagnóstico , Cardiopatías/sangre , Factores de Edad , Medición de Riesgo , EcocardiografíaRESUMEN
OBJECTIVE: The outcomes of COVID-19 patients on venovenous extracorporeal membrane oxygenation (VV-ECMO) varied. We aim to investigate the variability concerning location and timeframe. We conducted a retrospective analysis of data from 351 institutions in 53 countries. The primary outcome was survival to hospital discharge or death up to 90 days from ECMO start. The associations between calendar time (month and year) of ECMO initiation and the primary outcome were examined by Cox regression modeling. Multivariable survival analyses were adjusted for the time of ECMO start, age, body mass index, APACHE II, SOFA, and the duration of mechanical ventilation before ECMO. RESULTS: 1060 adult COVID-19 patients enrolled in the COVID-19 Critical Care Consortium (COVID Critical) international registry and required VV-ECMO support. The study period is from January 2020 to December 2021. The median age was 51 years old, and 70% were male patients. Most patients were from Europe (39.3%) and North America (37.4%). The in-hospital mortality of the entire cohort was 47.12%. In North America and Europe, there was an increased probability of death from May 2020 through February 2021. Latin America showed a steady rate of survival until late in the study. South Asia, the Middle East, and Africa showed an increased chance of mortality around May 2020. In the Asian-Pacific region, after February 2021, there was an increased probability of death. The time of ECMO initiation and advanced patient age were associated with increased mortality. CONCLUSION: Variability in the outcomes of COVID-19 patients on VV-ECMO existed within different regions. This variability reflects the differences in resources, policies, patient selection, management, and possibly COVID-19 virus subtypes. Our findings might help guide global response in the future by early adoption of patient selection protocols, worldwide policies, and delivery of resources.
RESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to present with pulmonary and extra-pulmonary organ complications. In comparison with the 2009 pandemic (pH1N1), SARS-CoV-2 infection is likely to lead to more severe disease, with multi-organ effects, including cardiovascular disease. SARS-CoV-2 has been associated with acute and long-term cardiovascular disease, but the molecular changes that govern this remain unknown. In this study, we investigated the host transcriptome landscape of cardiac tissues collected at rapid autopsy from seven SARS-CoV-2, two pH1N1, and six control patients using targeted spatial transcriptomics approaches. Although SARS-CoV-2 was not detected in cardiac tissue, host transcriptomics showed upregulation of genes associated with DNA damage and repair, heat shock, and M1-like macrophage infiltration in the cardiac tissues of COVID-19 patients. The DNA damage present in the SARS-CoV-2 patient samples, were further confirmed by γ-H2Ax immunohistochemistry. In comparison, pH1N1 showed upregulation of interferon-stimulated genes, in particular interferon and complement pathways, when compared with COVID-19 patients. These data demonstrate the emergence of distinct transcriptomic profiles in cardiac tissues of SARS-CoV-2 and pH1N1 influenza infection supporting the need for a greater understanding of the effects on extra-pulmonary organs, including the cardiovascular system of COVID-19 patients, to delineate the immunopathobiology of SARS-CoV-2 infection, and long term impact on health.
Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Humanos , SARS-CoV-2 , Transcriptoma , InterferonesRESUMEN
OBJECTIVES: Evidence of cerebrovascular complications in COVID-19 requiring venovenous extracorporeal membrane oxygenation (ECMO) is limited. Our study aims to characterize the prevalence and risk factors of stroke secondary to COVID-19 in patients on venovenous ECMO. DESIGN: We analyzed prospectively collected observational data, using univariable and multivariable survival modeling to identify risk factors for stroke. Cox proportional hazards and Fine-Gray models were used, with death and discharge treated as competing risks. SETTING: Three hundred eighty institutions in 53 countries in the COVID-19 Critical Care Consortium (COVID Critical) registry. PATIENTS: Adult COVID-19 patients who were supported by venovenous ECMO. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Five hundred ninety-five patients (median age [interquartile range], 51 yr [42-59 yr]; male: 70.8%) had venovenous ECMO support. Forty-three patients (7.2%) suffered strokes, 83.7% of which were hemorrhagic. In multivariable survival analysis, obesity (adjusted hazard ratio [aHR], 2.19; 95% CI, 1.05-4.59) and use of vasopressors before ECMO (aHR, 2.37; 95% CI, 1.08-5.22) were associated with an increased risk of stroke. Forty-eight-hour post-ECMO Pa co2 -pre-ECMO Pa co2 /pre-ECMO Pa co2 (relative ΔPa co2 ) of negative 26% and 48-hour post-ECMO Pa o2 -pre-ECMO Pa o2 /pre-ECMO Pa o2 (relative ΔPa o2 ) of positive 24% at 48 hours of ECMO initiation were observed in stroke patients in comparison to relative ΔPa co2 of negative 17% and relative ΔPa o2 of positive 7% in the nonstroke group. Patients with acute stroke had a 79% in-hospital mortality compared with 45% mortality for stroke-free patients. CONCLUSIONS: Our study highlights the association of obesity and pre-ECMO vasopressor use with the development of stroke in COVID-19 patients on venovenous ECMO. Also, the importance of relative decrease in Pa co2 and moderate hyperoxia within 48 hours after ECMO initiation were additional risk factors.
Asunto(s)
COVID-19 , Oxigenación por Membrana Extracorpórea , Accidente Cerebrovascular , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dióxido de Carbono , COVID-19/complicaciones , COVID-19/epidemiología , COVID-19/terapia , Oxigenación por Membrana Extracorpórea/efectos adversos , Obesidad , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiologíaRESUMEN
OBJECTIVES: To determine the prevalence and outcomes associated with hemorrhage, disseminated intravascular coagulopathy, and thrombosis (HECTOR) complications in ICU patients with COVID-19. DESIGN: Prospective, observational study. SETTING: Two hundred twenty-nine ICUs across 32 countries. PATIENTS: Adult patients (≥ 16 yr) admitted to participating ICUs for severe COVID-19 from January 1, 2020, to December 31, 2021. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: HECTOR complications occurred in 1,732 of 11,969 study eligible patients (14%). Acute thrombosis occurred in 1,249 patients (10%), including 712 (57%) with pulmonary embolism, 413 (33%) with myocardial ischemia, 93 (7.4%) with deep vein thrombosis, and 49 (3.9%) with ischemic strokes. Hemorrhagic complications were reported in 579 patients (4.8%), including 276 (48%) with gastrointestinal hemorrhage, 83 (14%) with hemorrhagic stroke, 77 (13%) with pulmonary hemorrhage, and 68 (12%) with hemorrhage associated with extracorporeal membrane oxygenation (ECMO) cannula site. Disseminated intravascular coagulation occurred in 11 patients (0.09%). Univariate analysis showed that diabetes, cardiac and kidney diseases, and ECMO use were risk factors for HECTOR. Among survivors, ICU stay was longer (median days 19 vs 12; p < 0.001) for patients with versus without HECTOR, but the hazard of ICU mortality was similar (hazard ratio [HR] 1.01; 95% CI 0.92-1.12; p = 0.784) overall, although this hazard was identified when non-ECMO patients were considered (HR 1.13; 95% CI 1.02-1.25; p = 0.015). Hemorrhagic complications were associated with an increased hazard of ICU mortality compared to patients without HECTOR complications (HR 1.26; 95% CI 1.09-1.45; p = 0.002), whereas thrombosis complications were associated with reduced hazard (HR 0.88; 95% CI 0.79-0.99, p = 0.03). CONCLUSIONS: HECTOR events are frequent complications of severe COVID-19 in ICU patients. Patients receiving ECMO are at particular risk of hemorrhagic complications. Hemorrhagic, but not thrombotic complications, are associated with increased ICU mortality.
Asunto(s)
COVID-19 , Trombosis , Adulto , Humanos , COVID-19/complicaciones , COVID-19/epidemiología , COVID-19/terapia , Estudios Prospectivos , Enfermedad Crítica , Trombosis/epidemiología , Trombosis/etiología , Cuidados Críticos , Hemorragia/epidemiología , Hemorragia/etiología , Estudios RetrospectivosRESUMEN
BACKGROUND: Acute kidney injury (AKI) is a frequent and severe complication of both COVID-19-related acute respiratory distress syndrome (ARDS) and non-COVID-19-related ARDS. The COVID-19 Critical Care Consortium (CCCC) has generated a global data set on the demographics, management and outcomes of critically ill COVID-19 patients. The LUNG-SAFE study was an international prospective cohort study of patients with severe respiratory failure, including ARDS, which pre-dated the pandemic. METHODS: The incidence, demographic profile, management and outcomes of early AKI in patients undergoing invasive mechanical ventilation for COVID-19-related ARDS were described and compared with AKI in a non-COVID-19-related ARDS cohort. RESULTS: Of 18,964 patients in the CCCC data set, 1699 patients with COVID-19-related ARDS required invasive ventilation and had relevant outcome data. Of these, 110 (6.5%) had stage 1, 94 (5.5%) had stage 2, 151 (8.9%) had stage 3 AKI, while 1214 (79.1%) had no AKI within 48 h of initiating invasive mechanical ventilation. Patients developing AKI were older and more likely to have hypertension or chronic cardiac disease. There were geo-economic differences in the incidence of AKI, with lower incidence of stage 3 AKI in European high-income countries and a higher incidence in patients from middle-income countries. Both 28-day and 90-day mortality risk was increased for patients with stage 2 (HR 2.00, p < 0.001) and stage 3 AKI (HR 1.95, p < 0.001). Compared to non-COVID-19 ARDS, the incidence of shock was reduced with lower cardiovascular SOFA score across all patient groups, while hospital mortality was worse in all groups [no AKI (30 vs 50%), Stage 1 (38 vs 58%), Stage 2 (56 vs 74%), and Stage 3 (52 vs 72%), p < 0.001]. The time profile of onset of AKI also differed, with 56% of all AKI occurring in the first 48 h in patients with COVID-19 ARDS compared to 89% in the non-COVID-19 ARDS population. CONCLUSION: AKI is a common and serious complication of COVID-19, with a high mortality rate, which differs by geo-economic location. Important differences exist in the profile of AKI in COVID-19 versus non-COVID-19 ARDS in terms of their haemodynamic profile, time of onset and clinical outcomes.
Asunto(s)
Lesión Renal Aguda , COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , COVID-19/complicaciones , COVID-19/epidemiología , COVID-19/terapia , Estudios Prospectivos , Factores de Riesgo , Síndrome de Dificultad Respiratoria/epidemiología , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/terapia , Estudios Retrospectivos , Unidades de Cuidados Intensivos , Mortalidad HospitalariaRESUMEN
OBJECTIVE: Pulsatile-flow veno-arterial extracorporeal membrane oxygenation (V-A ECMO) has shown encouraging results for microcirculation resuscitation and left ventricle unloading in patients with refractory cardiogenic shock. We aimed to comprehensively assess different V-A ECMO parameters and their contribution to hemodynamic energy production and transfer through the device circuit. METHODS: We used the i-cor® ECMO circuit, which composed of Deltastream DP3 diagonal pump and i-cor® console (Xenios AG), the Hilite 7000 membrane oxygenator (Xenios AG), venous and arterial tubing and a 1 L soft venous pseudo-patient reservoir. Four different arterial cannulae (Biomedicus 15 and 17 Fr, Maquet 15 and 17 Fr) were used. For each cannula, 192 different pulsatile modes were investigated by adjusting flow rate, systole/diastole ratio, pulsatile amplitudes and frequency, yielding 784 unique conditions. A dSpace data acquisition system was used to collect flow and pressure data. RESULTS: Increasing flow rates and pulsatile amplitudes were associated with significantly higher hemodynamic energy production (both p < 0.001), while no significant associations were seen while adjusting systole-to-diastole ratio (p = 0.73) or pulsing frequency (p = 0.99). Arterial cannula represents the highest resistance to hemodynamic energy transfer with 32%-59% of total hemodynamic energy generated being lost within, depending on pulsatile flow settings used. CONCLUSIONS: Herein, we presented the first study to compare hemodynamic energy production with all pulsatile ECLS pump settings and their combinations and widely used yet previously unexamined four different arterial ECMO cannula. Only increased flow rate and amplitude increase hemodynamic energy production as single factors, whilst other factors are relevant when combined.
Asunto(s)
Oxigenación por Membrana Extracorpórea , Humanos , Cánula , Modelos Cardiovasculares , Diseño de Equipo , Oxigenadores de Membrana , Hemodinámica , Flujo PulsátilRESUMEN
BACKGROUND: Extracorporeal life support (ECLS) has extensive applications in managing patients with acute cardiac and pulmonary failure. Two primary modalities of ECLS, cardiopulmonary bypass (CPB) and extracorporeal membrane oxygenation (ECMO), include several similarities in their composition, complications, and patient outcomes. Both CPB and ECMO pose a high risk of thrombus formation and platelet activation due to the large surface area of the devices and bleeding due to system anticoagulation. Therefore, novel methods of anticoagulation are needed to reduce the morbidity and mortality associated with extracorporeal support. Nitric oxide (NO) has potent antiplatelet properties and presents a promising alternative or addition to anticoagulation with heparin during extracorporeal support. METHODS: We developed two ex vivo models of CPB and ECMO to investigate NO effects on anticoagulation and inflammation in these systems. RESULTS: Sole addition of NO as an anticoagulant was not successful in preventing thrombus formation in the ex vivo setups, therefore a combination of low-level heparin with NO was used. Antiplatelet effects were observed in the ex vivo ECMO model when NO was delivered at 80 ppm. Platelet count was preserved after 480 min when NO was delivered at 30 ppm. CONCLUSION: Combined delivery of NO and heparin did not improve haemocompatibility in either ex vivo model of CPB and ECMO. Anti-inflammatory effects of NO in ECMO systems have to be evaluated further.
Asunto(s)
Oxigenación por Membrana Extracorpórea , Trombosis , Humanos , Oxigenación por Membrana Extracorpórea/efectos adversos , Oxigenación por Membrana Extracorpórea/métodos , Óxido Nítrico/uso terapéutico , Puente Cardiopulmonar/efectos adversos , Puente Cardiopulmonar/métodos , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Heparina/farmacología , Heparina/uso terapéutico , Trombosis/etiología , Trombosis/prevención & control , Inflamación/etiología , Inflamación/prevención & controlRESUMEN
INTRODUCTION: Iliopsoas haematoma (IPH) during extracorporeal membrane oxygenation (ECMO) is a rare bleeding complication that can be fatal due to its progression to abdominal compartment syndrome, but its incidence and risk factors are not well known. We have previously reported an IPH incidence rate of 16% in Japan. Among possible reasons for this high incidence, ethnicity has been hypothesised to play a role. Therefore, we used an international multi-centre cohort registry to test this hypothesis by determining the incidence rate of IPH. METHODS: This study was performed using the COVID-19 Critical Care Consortium database, conducted in 30 countries across five continents between 3 January 2020, and 20 June 2022. RESULTS: Overall, 1102 patients received ECMO for COVID-19-related acute respiratory distress syndrome. Of them, only seven were reported to have IPH, indicating an incidence rate of 0.64%, with comparable rates between the countries. The IPH group tended to have a higher mortality rate (71.4%) than the non-IPH group (51%). CONCLUSIONS: Overall incidence of IPH in the studied COVID-19 ECMO cohort was 0.64%. Most cases were reported from Japan, Belgium, and Italy. In our study, this rare complication did not appear to be confined to Asian patients. Due to the high fatality rate, awareness about the occurrence of IPH should be recognised.
RESUMEN
Introduction: Obesity is associated with a worse prognosis in COVID-19 patients with acute respiratory distress syndrome (ARDS). Veno-venous (V-V) Extracorporeal Membrane Oxygenation (ECMO) can be a rescue option, however, the direct impact of morbid obesity in this select group of patients remains unclear.Methods: This is an observational study of critically ill adults with COVID-19 and ARDS supported by V-V ECMO. Data are from 82 institutions participating in the COVID-19 Critical Care Consortium international registry. Patients were admitted between 12 January 2020 to 27 April 2021. They were stratified based on Body Mass Index (BMI) at 40 kg/m2. The endpoint was survival to hospital discharge.Results: Complete data available on 354 of 401 patients supported on V-V ECMO. The characteristics of the high BMI (>40 kg/m2) and lower BMI (≤40 kg/m2) groups were statistically similar. However, the 'high BMI' group were comparatively younger and had a lower APACHE II score. Using survival analysis, older age (Hazard Ratio, HR 1.49 per-10-years, CI 1.25-1.79) and higher BMI (HR 1.15 per-5 kg/m2 increase, CI 1.03-1.28) were associated with a decreased patient survival. A safe BMI threshold above which V-V ECMO would be prohibitive was not apparent and instead, the risk of an adverse outcome increased linearly with BMI.Conclusion: In COVID-19 patients with severe ARDS who require V-V ECMO, there is an increased risk of death associated with age and BMI. The risk is linear and there is no BMI threshold beyond which the risk for death greatly increases.
RESUMEN
BACKGROUND: Ischemia-reperfusion injury (IRI) is one of the major risk factors implicated in morbidity and mortality associated with cardiovascular disease. During cardiac ischemia, the buildup of acidic metabolites results in decreased intracellular and extracellular pH, which can reach as low as 6.0 to 6.5. The resulting tissue acidosis exacerbates ischemic injury and significantly affects cardiac function. METHODS: We used genetic and pharmacologic methods to investigate the role of acid-sensing ion channel 1a (ASIC1a) in cardiac IRI at the cellular and whole-organ level. Human induced pluripotent stem cell-derived cardiomyocytes as well as ex vivo and in vivo models of IRI were used to test the efficacy of ASIC1a inhibitors as pre- and postconditioning therapeutic agents. RESULTS: Analysis of human complex trait genetics indicates that variants in the ASIC1 genetic locus are significantly associated with cardiac and cerebrovascular ischemic injuries. Using human induced pluripotent stem cell-derived cardiomyocytes in vitro and murine ex vivo heart models, we demonstrate that genetic ablation of ASIC1a improves cardiomyocyte viability after acute IRI. Therapeutic blockade of ASIC1a using specific and potent pharmacologic inhibitors recapitulates this cardioprotective effect. We used an in vivo model of myocardial infarction and 2 models of ex vivo donor heart procurement and storage as clinical models to show that ASIC1a inhibition improves post-IRI cardiac viability. Use of ASIC1a inhibitors as preconditioning or postconditioning agents provided equivalent cardioprotection to benchmark drugs, including the sodium-hydrogen exchange inhibitor zoniporide. At the cellular and whole organ level, we show that acute exposure to ASIC1a inhibitors has no effect on cardiac ion channels regulating baseline electromechanical coupling and physiologic performance. CONCLUSIONS: Our data provide compelling evidence for a novel pharmacologic strategy involving ASIC1a blockade as a cardioprotective therapy to improve the viability of hearts subjected to IRI.
Asunto(s)
Canales Iónicos Sensibles al Ácido/biosíntesis , Canales Iónicos Sensibles al Ácido/genética , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Preparación de Corazón Aislado/métodos , Masculino , Ratones , Ratones Noqueados , Isquemia Miocárdica/terapia , Daño por Reperfusión Miocárdica/terapia , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Polimorfismo de Nucleótido Simple/fisiología , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Venenos de Araña/farmacologíaRESUMEN
OBJECTIVES: The study investigated the impact of prone positioning during venovenous extracorporeal membrane oxygenation support for coronavirus disease 2019 acute respiratory failure on the patient outcome. DESIGN: An observational study of venovenous extracorporeal membrane oxygenation patients. We used a multistate survival model to compare the outcomes of patients treated with or without prone positioning during extracorporeal membrane oxygenation, which incorporates the dynamic nature of prone positioning and adjusts for potential confounders. SETTING: Seventy-two international institutions participating in the Coronavirus Disease 2019 Critical Care Consortium international registry. PATIENTS: Coronavirus disease 2019 patients who were supported by venovenous extracorporeal membrane oxygenation during the study period. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: There were 232 coronavirus disease 2019 patients at 72 participating institutions who were supported with venovenous extracorporeal membrane oxygenation during the study period from February 16, 2020, to October 31, 2020. Proning was used in 176 patients (76%) before initiation of extracorporeal membrane oxygenation and in 67 patients (29%) during extracorporeal membrane oxygenation. Survival to hospital discharge was 33% in the extracorporeal membrane oxygenation prone group versus 22% in the extracorporeal membrane oxygenation supine group. Prone positioning during extracorporeal membrane oxygenation support was associated with reduced mortality (hazard ratio, 0.31; 95% CI, 0.14-0.68). CONCLUSIONS: Our study highlights that prone positioning during venovenous extracorporeal membrane oxygenation support for refractory coronavirus disease 2019-related acute respiratory distress syndrome is associated with reduced mortality. Given the observational nature of the study, a randomized controlled trial of prone positioning on venovenous extracorporeal membrane oxygenation is needed to confirm these findings.
Asunto(s)
COVID-19/terapia , Oxigenación por Membrana Extracorpórea , Posicionamiento del Paciente/métodos , Posición Prona , Síndrome de Dificultad Respiratoria/terapia , SARS-CoV-2 , Adulto , COVID-19/complicaciones , Femenino , Mortalidad Hospitalaria , Humanos , Masculino , Persona de Mediana Edad , Alta del Paciente , Probabilidad , Síndrome de Dificultad Respiratoria/etiologíaRESUMEN
BACKGROUND: The role of neuromuscular blocking agents (NMBAs) in coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) is not fully elucidated. Therefore, we aimed to investigate in COVID-19 patients with moderate-to-severe ARDS the impact of early use of NMBAs on 90-day mortality, through propensity score (PS) matching analysis. METHODS: We analyzed a convenience sample of patients with COVID-19 and moderate-to-severe ARDS, admitted to 244 intensive care units within the COVID-19 Critical Care Consortium, from February 1, 2020, through October 31, 2021. Patients undergoing at least 2 days and up to 3 consecutive days of NMBAs (NMBA treatment), within 48 h from commencement of IMV were compared with subjects who did not receive NMBAs or only upon commencement of IMV (control). The primary objective in the PS-matched cohort was comparison between groups in 90-day in-hospital mortality, assessed through Cox proportional hazard modeling. Secondary objectives were comparisons in the numbers of ventilator-free days (VFD) between day 1 and day 28 and between day 1 and 90 through competing risk regression. RESULTS: Data from 1953 patients were included. After propensity score matching, 210 cases from each group were well matched. In the PS-matched cohort, mean (± SD) age was 60.3 ± 13.2 years and 296 (70.5%) were male and the most common comorbidities were hypertension (56.9%), obesity (41.1%), and diabetes (30.0%). The unadjusted hazard ratio (HR) for death at 90 days in the NMBA treatment vs control group was 1.12 (95% CI 0.79, 1.59, p = 0.534). After adjustment for smoking habit and critical therapeutic covariates, the HR was 1.07 (95% CI 0.72, 1.61, p = 0.729). At 28 days, VFD were 16 (IQR 0-25) and 25 (IQR 7-26) in the NMBA treatment and control groups, respectively (sub-hazard ratio 0.82, 95% CI 0.67, 1.00, p = 0.055). At 90 days, VFD were 77 (IQR 0-87) and 87 (IQR 0-88) (sub-hazard ratio 0.86 (95% CI 0.69, 1.07; p = 0.177). CONCLUSIONS: In patients with COVID-19 and moderate-to-severe ARDS, short course of NMBA treatment, applied early, did not significantly improve 90-day mortality and VFD. In the absence of definitive data from clinical trials, NMBAs should be indicated cautiously in this setting.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Bloqueantes Neuromusculares , Síndrome de Dificultad Respiratoria , Anciano , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Bloqueantes Neuromusculares/uso terapéutico , Puntaje de Propensión , Respiración Artificial , Síndrome de Dificultad Respiratoria/tratamiento farmacológicoRESUMEN
BACKGROUND: The influence of renin-angiotensin-aldosterone system (RAAS) inhibitors on the critically ill COVID-19 patients with pre-existing hypertension remains uncertain. This study examined the impact of previous use of angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARB) on the critically ill COVID-19 patients. METHODS: Data from an international, prospective, observational cohort study involving 354 hospitals spanning 54 countries were included. A cohort of 737 COVID-19 patients with pre-existing hypertension admitted to intensive care units (ICUs) in 2020 were targeted. Multi-state survival analysis was performed to evaluate in-hospital mortality and hospital length of stay up to 90 days following ICU admission. RESULTS: A total of 737 patients were included-538 (73%) with pre-existing hypertension had received ACEi/ARBs before ICU admission, while 199 (27%) had not. Cox proportional hazards model showed that previous ACEi/ARB use was associated with a decreased hazard of in-hospital death (HR, 0.74, 95% CI 0.58-0.94). Sensitivity analysis adjusted for propensity scores showed similar results for hazards of death. The average length of hospital stay was longer in ACEi/ARB group with 21.2 days (95% CI 19.7-22.8 days) in ICU and 6.7 days (5.9-7.6 days) in general ward compared to non-ACEi/ARB group with 16.2 days (14.1-18.6 days) and 6.4 days (5.1-7.9 days), respectively. When analysed separately, results for ACEi or ARB patient groups were similar for both death and discharge. CONCLUSIONS: In critically ill COVID-19 patients with comorbid hypertension, use of ACEi/ARBs prior to ICU admission was associated with a reduced risk of in-hospital mortality following adjustment for baseline characteristics although patients with ACEi/ARB showed longer length of hospital stay. Clinical trial registration The registration number: ACTRN12620000421932; The date of registration: 30, March 2020; The URL of the registration: https://www.australianclinicaltrials.gov.au/anzctr/trial/ACTRN12620000421932 .
Asunto(s)
COVID-19 , Hipertensión , Antagonistas de Receptores de Angiotensina/efectos adversos , Inhibidores de la Enzima Convertidora de Angiotensina/efectos adversos , Estudios de Cohortes , Enfermedad Crítica , Mortalidad Hospitalaria , Humanos , Hipertensión/diagnóstico , Hipertensión/tratamiento farmacológico , Estudios Prospectivos , Sistema Renina-Angiotensina , Estudios RetrospectivosRESUMEN
BACKGROUND: Heart failure is an inexorably progressive disease with a high mortality, for which heart transplantation (HTx) remains the gold standard treatment. Currently, donor hearts are primarily derived from patients following brain stem death (BSD). BSD causes activation of the sympathetic nervous system, increases endothelin levels, and triggers significant inflammation that together with potential myocardial injury associated with the transplant procedure, may affect contractility of the donor heart. We examined peri-transplant myocardial catecholamine sensitivity and cardiac contractility post-BSD and transplantation in a clinically relevant ovine model. METHODS: Donor sheep underwent BSD (BSD, n = 5) or sham (no BSD) procedures (SHAM, n = 4) and were monitored for 24h prior to heart procurement. Orthotopic HTx was performed on a separate group of donor animals following 24h of BSD (BSD-Tx, n = 6) or SHAM injury (SH-Tx, n = 5). The healthy recipient heart was used as a control (HC, n = 11). A cumulative concentration-effect curve to (-)-noradrenaline (NA) was established using left (LV) and right ventricular (RV) trabeculae to determine ß1-adrenoceptor mediated potency (-logEC50 [(-)-noradrenaline] M) and maximal contractility (Emax). RESULTS: Our data showed reduced basal and maximal (-)-noradrenaline induced contractility of the RV (but not LV) following BSD as well as HTx, regardless of whether the donor heart was exposed to BSD or SHAM. The potency of (-)-noradrenaline was lower in left and right ventricles for BSD-Tx and SH-Tx compared to HC. CONCLUSION: These studies show that the combination of BSD and transplantation are likely to impair contractility of the donor heart, particularly for the RV. For the donor heart, this contractile dysfunction appears to be independent of changes to ß1-adrenoceptor sensitivity. However, altered ß1-adrenoceptor signalling is likely to be involved in post-HTx contractile dysfunction.
Asunto(s)
Muerte Encefálica/patología , Tronco Encefálico/patología , Trasplante de Corazón/efectos adversos , Disfunción Ventricular Derecha/etiología , Animales , Modelos Animales de Enfermedad , Femenino , Contracción Miocárdica , Ovinos , Disfunción Ventricular Derecha/patologíaRESUMEN
BACKGROUND: Heterogeneous respiratory system static compliance (CRS) values and levels of hypoxemia in patients with novel coronavirus disease (COVID-19) requiring mechanical ventilation have been reported in previous small-case series or studies conducted at a national level. METHODS: We designed a retrospective observational cohort study with rapid data gathering from the international COVID-19 Critical Care Consortium study to comprehensively describe CRS-calculated as: tidal volume/[airway plateau pressure-positive end-expiratory pressure (PEEP)]-and its association with ventilatory management and outcomes of COVID-19 patients on mechanical ventilation (MV), admitted to intensive care units (ICU) worldwide. RESULTS: We studied 745 patients from 22 countries, who required admission to the ICU and MV from January 14 to December 31, 2020, and presented at least one value of CRS within the first seven days of MV. Median (IQR) age was 62 (52-71), patients were predominantly males (68%) and from Europe/North and South America (88%). CRS, within 48 h from endotracheal intubation, was available in 649 patients and was neither associated with the duration from onset of symptoms to commencement of MV (p = 0.417) nor with PaO2/FiO2 (p = 0.100). Females presented lower CRS than males (95% CI of CRS difference between females-males: - 11.8 to - 7.4 mL/cmH2O p < 0.001), and although females presented higher body mass index (BMI), association of BMI with CRS was marginal (p = 0.139). Ventilatory management varied across CRS range, resulting in a significant association between CRS and driving pressure (estimated decrease - 0.31 cmH2O/L per mL/cmH20 of CRS, 95% CI - 0.48 to - 0.14, p < 0.001). Overall, 28-day ICU mortality, accounting for the competing risk of being discharged within the period, was 35.6% (SE 1.7). Cox proportional hazard analysis demonstrated that CRS (+ 10 mL/cm H2O) was only associated with being discharge from the ICU within 28 days (HR 1.14, 95% CI 1.02-1.28, p = 0.018). CONCLUSIONS: This multicentre report provides a comprehensive account of CRS in COVID-19 patients on MV. CRS measured within 48 h from commencement of MV has marginal predictive value for 28-day mortality, but was associated with being discharged from ICU within the same period. Trial documentation: Available at https://www.covid-critical.com/study . TRIAL REGISTRATION: ACTRN12620000421932.
Asunto(s)
COVID-19/complicaciones , COVID-19/terapia , Rendimiento Pulmonar/fisiología , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia , Adulto , Estudios de Cohortes , Cuidados Críticos/métodos , Europa (Continente) , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Índice de Severidad de la EnfermedadRESUMEN
Limb ischemia is a major complication associated with peripheral venoarterial extracorporeal membrane oxygenation (VA-ECMO). The high velocity jet from arterial cannulae can cause "sandblasting" injuries to the arterial endothelium, with the potential risk of distal embolization and end organ damage. The aim of this study was to identify, for a range of clinically relevant VA-ECMO cannulae and flow rates, any regions of peak flow velocity on the aortic wall which may predispose to vascular injury, and any regions of low-velocity flow which may predispose to thrombus formation. A silicone model of the aortic and iliac vessels was sourced and the right external iliac artery was cannulated. Cannulae ranged from 15 to 21 Fr in size. Simulated steady state ECMO flow rates were instituted using a magnetically levitated pump (CentriMag pump). Adaptive particle image velocimetry was performed for each cannula at 3, 3.5, 4, and 4.5 L/min. For all cannulae, in both horizontal and vertical side hole orientations, the peak velocity on the aortic wall ranged from 0.3 to 0.45 m/s, and the regions of lowest velocity flow were 0.05 m/s. The magnitude of peak velocity flow on the aortic wall was not different between a single pair versus multiple pairs of side holes. Maximum velocity flow on the aortic wall occurred earlier at a lower pump flow rate in the vertical orientation of distal side holes compared to a horizontal position. The presence of multiple paired side holes was associated with fewer low-velocity flow regions, and some retrograde flow, in the distal abdominal aorta compared to cannulae with a single pair of side holes. From this in vitro visualization study, the selection of a cannula design with multiple versus single pairs of side holes did not change the magnitude of peak velocity flow delivered to the vessel wall. Cannulae with multiple side holes were associated with fewer regions of low-velocity flow in the distal abdominal aorta. Further in vivo studies, and ideally clinical data would be required to assess any correlation of peak velocity flows with incidence of vascular injury, and any low-velocity flow regions with incidence of thrombosis.
Asunto(s)
Oxigenación por Membrana Extracorpórea/efectos adversos , Extremidades/irrigación sanguínea , Isquemia/prevención & control , Modelos Cardiovasculares , Lesiones del Sistema Vascular/prevención & control , Aorta Abdominal/lesiones , Velocidad del Flujo Sanguíneo , Cánula/efectos adversos , Diseño de Equipo , Oxigenación por Membrana Extracorpórea/instrumentación , Humanos , Arteria Ilíaca/lesiones , Isquemia/etiología , Isquemia/fisiopatología , Reología , Lesiones del Sistema Vascular/etiología , Lesiones del Sistema Vascular/fisiopatologíaRESUMEN
Rationale: Mesenchymal stromal cell (MSC) therapy is a promising intervention for acute respiratory distress syndrome (ARDS), although trials to date have not investigated its use alongside extracorporeal membrane oxygenation (ECMO). Recent preclinical studies have suggested that combining these interventions may attenuate the efficacy of ECMO.Objectives: To determine the safety and efficacy of MSC therapy in a model of ARDS and ECMO.Methods: ARDS was induced in 14 sheep, after which they were established on venovenous ECMO. Subsequently, they received either endobronchial induced pluripotent stem cell-derived human MSCs (hMSCs) (n = 7) or cell-free carrier vehicle (vehicle control; n = 7). During ECMO, a low Vt ventilation strategy was employed in addition to protocolized hemodynamic support. Animals were monitored and supported for 24 hours. Lung tissue, bronchoalveolar fluid, and plasma were analyzed, in addition to continuous respiratory and hemodynamic monitoring.Measurements and Main Results: The administration of hMSCs did not improve oxygenation (PaO2/FiO2 mean difference = -146 mm Hg; P = 0.076) or pulmonary function. However, histological evidence of lung injury (lung injury score mean difference = -0.07; P = 0.04) and BAL IL-8 were reduced. In addition, hMSC-treated animals had a significantly lower cumulative requirement for vasopressor. Despite endobronchial administration, animals treated with hMSCs had a significant elevation in transmembrane oxygenator pressure gradients. This was accompanied by more pulmonary artery thromboses and adherent hMSCs found on explanted oxygenator fibers.Conclusions: Endobronchial hMSC therapy in an ovine model of ARDS and ECMO can impair membrane oxygenator function and does not improve oxygenation. These data do not recommend the safe use of hMSCs during venovenous ECMO.