Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Reprod Dev ; 68(3): 190-197, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35249910

RESUMEN

Reproductive function is suppressed during lactation owing to the suckling-induced suppression of the kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and subsequent suppression of luteinizing hormone (LH) release. Our previous study revealed that somatostatin (SST) neurons mediate suckling-induced suppression of LH release via SST receptor 2 (SSTR2) in ovariectomized lactating rats during early lactation. This study examined whether central SST-SSTR2 signaling mediates the inhibition of ARC Kiss1 expression and LH release in lactating rats during late lactation and whether the inhibition of glutamatergic neurons, stimulators of LH release, is involved in the suppression of LH release mediated by central SST-SSTR2 signaling in lactating rats. A central injection of the SSTR2 antagonist CYN154806 (CYN) significantly increased ARC Kiss1 expression in lactating rats on day 16 of lactation. Dual in situ hybridization revealed that few ARC Kiss1-positive cells co-expressed Sstr2, and some of the ARC Slc17a6 (a glutamatergic neuronal marker)-positive cells co-expressed Sstr2. Furthermore, almost all ARC Kiss1-positive cells co-expressed Grin1, a subunit of N-methyl-D-aspartate (NMDA) receptors. The numbers of Slc17a6/Sstr2 double-labeled and Slc17a6 single-labeled cells were significantly lower in lactating dams than in non-lactating rats whose pups had been removed after parturition. A central injection of an NMDA antagonist reversed the CYN-induced increase in LH release in lactating rats. Overall, these results suggest that central SST-SSTR2 signaling, at least partly, mediates the suppression of ARC Kiss1 expression and LH release by inhibiting ARC glutamatergic interneurons in lactating rats.


Asunto(s)
Interneuronas , Kisspeptinas , Lactancia , Hormona Luteinizante , Receptores de Somatostatina , Somatostatina , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Femenino , Interneuronas/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Lactancia/metabolismo , Hormona Luteinizante/metabolismo , N-Metilaspartato/metabolismo , Oligopéptidos/farmacología , Ratas , Receptores de Somatostatina/antagonistas & inhibidores , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
2.
Endocr J ; 67(4): 409-418, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-31941848

RESUMEN

Accumulating evidence suggests that kisspeptin neurons in the arcuate nucleus (ARC), which coexpress neurokinin B and dynorphin, are involved in gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) pulse generation, while the anteroventral periventricular nucleus (AVPV) kisspeptin neurons are responsible for GnRH/LH surge generation. The present study aims to examine whether GnRH(1-5), a GnRH metabolite, regulates LH release via kisspeptin neurons. GnRH(1-5) was intracerebroventricularly injected to ovariectomized and estrogen-treated Wistar-Imamichi female rats. Immediately after the central GnRH(1-5) administration at 2 nmol, plasma LH concentration increased, resulting in significantly higher levels of the area under the curve and baseline of plasma LH concentrations compared to vehicle-injected controls. On the other hand, in Kiss1 knockout rats, GnRH(1-5) administration failed to affect LH secretion, suggesting that the facilitatory effect of GnRH(1-5) on LH release is mediated by kisspeptin neurons. Double in situ hybridization (ISH) for Kiss1 and Gpr101, a GnRH(1-5) receptor gene, revealed that few Kiss1-expressing cells coexpress Gpr101 in both ARC and AVPV. On the other hand, double ISH for Gpr101 and Slc17a6, a glutamatergic marker gene, revealed that 29.2% of ARC Gpr101-expressing cells coexpress Slc17a6. Further, most of the AVPV and ARC Kiss1-expressing cells coexpress Grin1, a gene encoding a subunit of NMDA receptor. Taken together, these results suggest that the GnRH(1-5)-GPR101 signaling facilitates LH release via indirect activation of kisspeptin neurons and that glutamatergic neurons may mediate the signaling. This provides a new aspect of kisspeptin- and GnRH-neuronal communication with the presence of stimulation from GnRH to kisspeptin neurons in female rats.


Asunto(s)
Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Hormona Liberadora de Gonadotropina/farmacología , Hipotálamo Anterior/efectos de los fármacos , Kisspeptinas/genética , Hormona Luteinizante/efectos de los fármacos , Neuronas/metabolismo , Fragmentos de Péptidos/farmacología , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Estradiol/farmacología , Estrógenos/farmacología , Femenino , Técnicas de Inactivación de Genes , Hipotálamo Anterior/citología , Hipotálamo Anterior/metabolismo , Hibridación in Situ , Inyecciones Intraventriculares , Kisspeptinas/farmacología , Hormona Luteinizante/metabolismo , Proteínas del Tejido Nervioso/genética , Ovariectomía , Ratas , Ratas Transgénicas , Receptores Acoplados a Proteínas G/genética , Receptores de N-Metil-D-Aspartato/genética , Proteína 2 de Transporte Vesicular de Glutamato/genética
3.
J Reprod Dev ; 66(4): 359-367, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32307336

RESUMEN

The present study aimed to evaluate whether novel conditional kisspeptin neuron-specific Kiss1 knockout (KO) mice utilizing the Cre-loxP system could recapitulate the infertility of global Kiss1 KO models, thereby providing further evidence for the fundamental role of hypothalamic kisspeptin neurons in regulating mammalian reproduction. We generated Kiss1-floxed mice and hypothalamic kisspeptin neuron-specific Cre-expressing transgenic mice and then crossed these two lines. The conditional Kiss1 KO mice showed pubertal failure along with a suppression of gonadotropin secretion and ovarian atrophy. These results indicate that newly-created hypothalamic Kiss1 KO mice obtained by the Cre-loxP system recapitulated the infertility of global Kiss1 KO models, suggesting that hypothalamic kisspeptin, but not peripheral kisspeptin, is critical for reproduction. Importantly, these Kiss1-floxed mice are now available and will be a valuable tool for detailed analyses of roles of each population of kisspeptin neurons in the brain and peripheral kisspeptin-producing cells by the spatiotemporal-specific manipulation of Cre expression.


Asunto(s)
Hipogonadismo/genética , Hipotálamo/metabolismo , Kisspeptinas/genética , Neuronas/metabolismo , Animales , Hipogonadismo/metabolismo , Kisspeptinas/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Fenotipo
4.
Dent Traumatol ; 36(2): 203-206, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31639268

RESUMEN

BACKGROUND/AIM: A mouthguard should be replaced when it deteriorates or becomes deformed as a result of the softness or flexibility of the material. The question, however, is how long can one use a mouthguard and when should one replace it with a newly made mouthguard? The aim of this study was to develop an improved method for measuring the fit of mouthguards based on previous reports and to examine its reliability. MATERIAL AND METHODS: Silicone fit-testing material was applied to the inner surface of the mouthguards of 12 participants, and the mouthguards were inserted into the participants' oral cavity. After the test material had set, the mouthguard was weighed. The intra-rater reliability and inter-rater reliability were analyzed using intraclass correlation coefficients. RESULTS: The intra-rater reliability was 0.813 (P < .001), and the inter-rater reliability was 0.817 (P < .001). Both values were greater than 0.7, suggesting that this measuring method had sufficient reliability. CONCLUSIONS: The results of this study indicate that mouthguard fit can be evaluated longitudinally to determine the optimal time to replace a mouthguard.


Asunto(s)
Protectores Bucales , Diseño de Equipo , Reproducibilidad de los Resultados
5.
J Reprod Dev ; 65(5): 397-406, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31155522

RESUMEN

Increasing evidence shows that puberty onset is largely dependent on body weight rather than chronological age. To investigate the mechanism involved in the energetic control of puberty onset, the present study examined effects of chronic food restriction during the prepubertal period and the resumption of ad libitum feeding for 24 and 48 h on estrous cyclicity, Kiss1 (kisspeptin gene), Tac3 (neurokinin B gene) and Pdyn (dynorphin A gene) expression in the hypothalamus, luteinizing hormone (LH) secretion and follicular development in female rats. When animals weighed 75 g, they were subjected to a restricted feeding to retard growth to 70-80 g by 49 days of age. Then, animals were subjected to ad libitum feeding or remained food-restricted. The growth-retarded rats did not show puberty onset associated with suppression of both Kiss1 and Pdyn expression in the arcuate nucleus (ARC). 24-h ad libitum feeding increased tonic LH secretion and the number of Graafian and non-Graafian tertiary follicles with an increase in the numbers of ARC Kiss1- and Pdyn-expressing cells. 48-h ad libitum feeding induced the vaginal proestrus and a surge-like LH increase with an increase in Kiss1-expressing cells in the anteroventral periventricular nucleus (AVPV). These results suggest that the negative energy balance causes pubertal failure with suppression of ARC Kiss1 and Pdyn expression and then subsequent gonadotropin secretion and ovarian function, while the positive energetic cues trigger puberty onset via an increase in ARC Kiss1 and Pdyn expression and thus gonadotropin secretion and follicular development in female rats.


Asunto(s)
Alimentación Animal , Encefalinas/metabolismo , Kisspeptinas/metabolismo , Precursores de Proteínas/metabolismo , Maduración Sexual , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Encéfalo/patología , Femenino , Privación de Alimentos , Trastornos del Crecimiento/fisiopatología , Hipotálamo Anterior/metabolismo , Hormona Luteinizante/metabolismo , Neuroquinina B/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Ratas , Ratas Wistar , Útero/metabolismo
6.
Endocrinology ; 160(2): 473-483, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30544226

RESUMEN

Follicular development and ovulation are profoundly suppressed during lactation in mammals. This suppression is suggested to be mainly due to the suckling-induced inhibition of kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and consequent inhibition of pulsatile GnRH/LH release. We examined whether central somatostatin (SST) signaling mediates the suckling-induced suppression of pulsatile LH secretion. SST has been reported to be expressed in the posterior intralaminar thalamic nucleus (PIL), where the suckling stimulus is postulated to be relayed to the hypothalamus during lactation. SST inhibitory receptors (SSTRs) are abundantly expressed in the ARC, where kisspeptin/neurokinin B/dynorphin A (KNDy) neurons are located. Histological and quantitative studies revealed that the suckling stimulus increased the number of SST-expressing cells in the PIL, and Sstr2 expression in the ARC. Furthermore, a central injection of an SSTR2 antagonist caused a significant increase in pulsatile LH release in lactating rats. Double labeling of Sstr2 and the neurokinin B gene, as a marker for ARC KNDy neurons, showed Sstr2 expression was abundantly detected in the ARC, but few KNDy neurons coexpressed Sstr2 in lactating rats. Taken together, these findings suggest the suckling-induced activation of SST-SSTR2 signaling mediates, at least in part, the suppression of pulsatile LH secretion during lactation in rats, probably via the indirect effects of SST on KNDy neurons. These results provide a new aspect on the role of central SST-SSTR signaling in understanding the mechanism underlying lactational anestrus.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Lactancia , Hormona Luteinizante/metabolismo , Receptores de Somatostatina/metabolismo , Animales , Animales Lactantes , Femenino , Núcleos Talámicos Intralaminares/metabolismo , Neuropéptidos/metabolismo , Ratas , Receptores de Somatostatina/antagonistas & inhibidores , Somatostatina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA