Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 612(7940): 512-518, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477539

RESUMEN

Progress has been made in the elucidation of sleep and wakefulness regulation at the neurocircuit level1,2. However, the intracellular signalling pathways that regulate sleep and the neuron groups in which these intracellular mechanisms work remain largely unknown. Here, using a forward genetics approach in mice, we identify histone deacetylase 4 (HDAC4) as a sleep-regulating molecule. Haploinsufficiency of Hdac4, a substrate of salt-inducible kinase 3 (SIK3)3, increased sleep. By contrast, mice that lacked SIK3 or its upstream kinase LKB1 in neurons or with a Hdac4S245A mutation that confers resistance to phosphorylation by SIK3 showed decreased sleep. These findings indicate that LKB1-SIK3-HDAC4 constitute a signalling cascade that regulates sleep and wakefulness. We also performed targeted manipulation of SIK3 and HDAC4 in specific neurons and brain regions. This showed that SIK3 signalling in excitatory neurons located in the cerebral cortex and the hypothalamus positively regulates EEG delta power during non-rapid eye movement sleep (NREMS) and NREMS amount, respectively. A subset of transcripts biased towards synaptic functions was commonly regulated in cortical glutamatergic neurons through the expression of a gain-of-function allele of Sik3 and through sleep deprivation. These findings suggest that NREMS quantity and depth are regulated by distinct groups of excitatory neurons through common intracellular signals. This study provides a basis for linking intracellular events and circuit-level mechanisms that control NREMS.


Asunto(s)
Neuronas , Duración del Sueño , Sueño , Vigilia , Animales , Ratones , Electroencefalografía , Neuronas/metabolismo , Neuronas/fisiología , Sueño/genética , Sueño/fisiología , Privación de Sueño/genética , Vigilia/genética , Vigilia/fisiología , Transducción de Señal , Ritmo Delta , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Hipotálamo/citología , Hipotálamo/fisiología , Ácido Glutámico/metabolismo , Sueño de Onda Lenta/genética , Sueño de Onda Lenta/fisiología
2.
Proc Natl Acad Sci U S A ; 120(11): e2218209120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36877841

RESUMEN

Mammals exhibit circadian cycles of sleep and wakefulness under the control of the suprachiasmatic nucleus (SCN), such as the strong arousal phase-locked to the beginning of the dark phase in laboratory mice. Here, we demonstrate that salt-inducible kinase 3 (SIK3) deficiency in gamma-aminobutyric acid (GABA)-ergic neurons or neuromedin S (NMS)-producing neurons delayed the arousal peak phase and lengthened the behavioral circadian cycle under both 12-h light:12-h dark condition (LD) and constant dark condition (DD) without changing daily sleep amounts. In contrast, the induction of a gain-of-function mutant allele of Sik3 in GABAergic neurons exhibited advanced activity onset and a shorter circadian period. Loss of SIK3 in arginine vasopressin (AVP)-producing neurons lengthened the circadian cycle, but the arousal peak phase was similar to that in control mice. Heterozygous deficiency of histone deacetylase (HDAC) 4, a SIK3 substrate, shortened the circadian cycle, whereas mice with HDAC4 S245A, which is resistant to phosphorylation by SIK3, delayed the arousal peak phase. Phase-delayed core clock gene expressions were detected in the liver of mice lacking SIK3 in GABAergic neurons. These results suggest that the SIK3-HDAC4 pathway regulates the circadian period length and the timing of arousal through NMS-positive neurons in the SCN.


Asunto(s)
Nivel de Alerta , Histona Desacetilasas , Proteínas Serina-Treonina Quinasas , Vigilia , Animales , Ratones , Alelos , Arginina Vasopresina , Proteínas Serina-Treonina Quinasas/genética , Núcleo Supraquiasmático , Histona Desacetilasas/genética
3.
PLoS Biol ; 20(1): e3001507, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041655

RESUMEN

Genome editing can introduce designed mutations into a target genomic site. Recent research has revealed that it can also induce various unintended events such as structural variations, small indels, and substitutions at, and in some cases, away from the target site. These rearrangements may result in confounding phenotypes in biomedical research samples and cause a concern in clinical or agricultural applications. However, current genotyping methods do not allow a comprehensive analysis of diverse mutations for phasing and mosaic variant detection. Here, we developed a genotyping method with an on-target site analysis software named Determine Allele mutations and Judge Intended genotype by Nanopore sequencer (DAJIN) that can automatically identify and classify both intended and unintended diverse mutations, including point mutations, deletions, inversions, and cis double knock-in at single-nucleotide resolution. Our approach with DAJIN can handle approximately 100 samples under different editing conditions in a single run. With its high versatility, scalability, and convenience, DAJIN-assisted multiplex genotyping may become a new standard for validating genome editing outcomes.


Asunto(s)
Edición Génica , Técnicas de Genotipaje/métodos , Programas Informáticos , Animales , Técnicas de Sustitución del Gen , Genoma , Genotipo , Mutación INDEL , Aprendizaje Automático , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Mutación , Secuenciación de Nanoporos , Análisis de Secuencia de ADN
4.
EMBO Rep ; 23(7): e54992, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35587095

RESUMEN

Microinjection of spermatozoa or spermatids into oocytes is a major choice for infertility treatment. However, the use of premeiotic spermatocytes has never been considered because of its technical problems. Here, we show that the efficiency of spermatocyte injection in mice can be improved greatly by reducing the size of the recipient oocytes. Live imaging showed that the underlying mechanism involves reduced premature separation of the spermatocyte's meiotic chromosomes, which produced much greater (19% vs. 1%) birth rates in smaller oocytes. Application of this technique to spermatocyte arrest caused by STX2 deficiency, an azoospermia factor also found in humans, resulted in the production of live offspring. Thus, the microinjection of primary spermatocytes into oocytes may be a potential treatment for overcoming a form of nonobstructive azoospermia caused by meiotic failure.


Asunto(s)
Azoospermia , Espermatocitos , Animales , Humanos , Masculino , Meiosis , Ratones , Oocitos , Espermátides
5.
PLoS Genet ; 16(4): e1008693, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32324833

RESUMEN

Amino acids exert many biological functions, serving as allosteric regulators and neurotransmitters, as constituents in proteins and as nutrients. GCN2-mediated phosphorylation of eukaryotic initiation factor 2 alpha (elF2α) restores homeostasis in response to amino acid starvation (AAS) through the inhibition of the general translation and upregulation of amino acid biosynthetic enzymes and transporters by activating the translation of Gcn4 and ATF4 in yeast and mammals, respectively. GCN1 is a GCN2-binding protein that possesses an RWD binding domain (RWDBD) in its C-terminus. In yeast, Gcn1 is essential for Gcn2 activation by AAS; however, the roles of GCN1 in mammals need to be established. Here, we revealed a novel role of GCN1 that does not depend on AAS by generating two Gcn1 mutant mouse lines: Gcn1-knockout mice (Gcn1 KO mice (Gcn1-/-)) and RWDBD-deleted mutant mice (Gcn1ΔRWDBD mice). Both mutant mice showed growth retardation, which was not observed in the Gcn2 KO mice, such that the Gcn1 KO mice died at the intermediate stage of embryonic development because of severe growth retardation, while the Gcn1ΔRWDBD embryos showed mild growth retardation and died soon after birth, most likely due to respiratory failure. Extension of pregnancy by 24 h through the administration of progesterone to the pregnant mothers rescued the expression of differentiation markers in the lungs and prevented lethality of the Gcn1ΔRWDBD pups, indicating that perinatal lethality of the Gcn1ΔRWDBD embryos was due to simple growth retardation. Similar to the yeast Gcn2/Gcn1 system, AAS- or UV irradiation-induced elF2α phosphorylation was diminished in the Gcn1ΔRWDBD mouse embryonic fibroblasts (MEFs), suggesting that GCN1 RWDBD is responsible for GCN2 activity. In addition, we found reduced cell proliferation and G2/M arrest accompanying a decrease in Cdk1 and Cyclin B1 in the Gcn1ΔRWDBD MEFs. Our results demonstrated, for the first time, that GCN1 is essential for both GCN2-dependent stress response and GCN2-independent cell cycle regulation.


Asunto(s)
Ciclo Celular , Proliferación Celular , Desarrollo Fetal , Proteínas de Unión al ARN/metabolismo , Estrés Fisiológico , Transactivadores/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Células Cultivadas , Ciclina B1/metabolismo , Fibroblastos/metabolismo , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN/genética , Transactivadores/genética
6.
J Neurosci ; 41(30): 6449-6467, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34099512

RESUMEN

In sensory systems of the brain, mechanisms exist to extract distinct features from stimuli to generate a variety of behavioral repertoires. These often correspond to different cell types at various stages in sensory processing. In the mammalian olfactory system, complex information processing starts in the olfactory bulb, whose output is conveyed by mitral cells (MCs) and tufted cells (TCs). Despite many differences between them, and despite the crucial position they occupy in the information hierarchy, Cre-driver lines that distinguish them do not yet exist. Here, we sought to identify genes that are differentially expressed between MCs and TCs of the mouse, with an ultimate goal to generate a cell type-specific Cre-driver line, starting from a transcriptome analysis using a large and publicly available single-cell RNA-seq dataset (Zeisel et al., 2018). Many genes were differentially expressed, but only a few showed consistent expressions in MCs and at the specificity required. After further validating these putative markers using ISH, two genes (i.e., Pkib and Lbdh2) remained as promising candidates. Using CRISPR/Cas9-mediated gene editing, we generated Cre-driver lines and analyzed the resulting recombination patterns. This indicated that our new inducible Cre-driver line, Lbhd2-CreERT2, can be used to genetically label MCs in a tamoxifen dose-dependent manner, both in male and female mice, as assessed by soma locations, projection patterns, and sensory-evoked responses in vivo Hence, this is a promising tool for investigating cell type-specific contributions to olfactory processing and demonstrates the power of publicly accessible data in accelerating science.SIGNIFICANCE STATEMENT In the brain, distinct cell types play unique roles. It is therefore important to have tools for studying unique cell types specifically. For the sense of smell in mammals, information is processed first by circuits of the olfactory bulb, where two types of cells, mitral cells and tufted cells, output different information. We generated a transgenic mouse line that enables mitral cells to be specifically labeled or manipulated. This was achieved by looking for genes that are specific to mitral cells using a large and public gene expression dataset, and creating a transgenic mouse using the gene editing technique, CRISPR/Cas9. This will allow scientists to better investigate parallel information processing underlying the sense of smell.


Asunto(s)
Línea Celular , Neuronas/citología , Bulbo Olfatorio/citología , Percepción Olfatoria/fisiología , Animales , Femenino , Integrasas , Masculino , Ratones , Ratones Transgénicos , Vías Olfatorias/citología
7.
J Neurosci ; 41(12): 2733-2746, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33558433

RESUMEN

Sleep is regulated in a homeostatic manner. Sleep deprivation increases sleep need, which is compensated mainly by increased EEG δ power during non-rapid eye movement sleep (NREMS) and, to a lesser extent, by increased sleep amount. Although genetic factors determine the constitutive level of sleep need and sleep amount in mice and humans, the molecular entity behind sleep need remains unknown. Recently, we found that a gain-of-function Sleepy (Slp) mutation in the salt-inducible kinase 3 (Sik3) gene, which produces the mutant SIK3(SLP) protein, leads to an increase in NREMS EEG δ power and sleep amount. Since Sik3Slp mice express SIK3(SLP) in various types of cells in the brain as well as multiple peripheral tissues from the embryonic stage, the cell type and developmental stage responsible for the sleep phenotype in Sik3Slp mice remain to be elucidated. Here, we generated two mouse lines, synapsin1CreERT2 and Sik3ex13flox mice, which enable inducible Cre-mediated, conditional expression of SIK3(SLP) in neurons on tamoxifen administration. Administration of tamoxifen to synapsin1CreERT2 mice during late infancy resulted in higher recombination efficiency than administration during adolescence. SIK3(SLP) expression after late infancy increased NREMS and NREMS δ power in male synapsin1CreERT2; Sik3ex13flox/+ mice. The expression of SIK3(SLP) after adolescence led to a higher NREMS δ power without a significant change in NREMS amounts. Thus, neuron-specific expression of SIK3(SLP) after late infancy is sufficient to increase sleep.SIGNIFICANCE STATEMENT The propensity to accumulate sleep need during wakefulness and to dissipate it during sleep underlies the homeostatic regulation of sleep. However, little is known about the developmental stage and cell types involved in determining the homeostatic regulation of sleep. Here, we show that Sik3Slp allele induction in mature neurons in late infancy is sufficient to increase non-rapid eye movement sleep amount and non-rapid eye movement sleep δ power. SIK3 signaling in neurons constitutes an intracellular mechanism to increase sleep.


Asunto(s)
Alelos , Mutación/fisiología , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/biosíntesis , Sueño/fisiología , Vigilia/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/genética
8.
Bioorg Med Chem ; 61: 116728, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35395514

RESUMEN

We have developed a series of attenuated cationic amphiphilic lytic (ACAL) peptides that can efficiently bring immunoglobulin G (IgG) and other functional proteins into cells. Delivery is generally achieved through the coadministration of ACAL peptides with cargo proteins. However, conjugation of ACAL peptides with cargos may be a promising approach for in vivo application to link in vivo outcomes of ACAL peptides and cargos. This study describes the creation of a new cell-permeable ACAL peptide, L17ER4. L17E is an optimized prototype of ACAL peptides previously developed in our laboratory for efficient delivery of IgGs into cells. Delivery was improved by functionalizing L17E with a tetra-arginine (R4) tag. Compared to the use of R8, a representative cell-penetrating peptide with high intracellular delivery efficacy, conjugation with L17ER4 afforded approximately four-fold higher cellular uptake of model small-molecule cargos (fluorescein isothiocyanate and HiBiT peptide). L17ER4 was also able to deliver proteins to cells. Fused with L17ER4, Cre recombinase was delivered into cells. Intracerebroventricular injection of Cre-L17ER4 into green red reporter mice, R26GRR, led to significant in vivo gene recombination in ependymal cells, suggesting that L17ER4 may be used as a cell-penetrating peptide for delivering protein therapeutics into cells in vivo.


Asunto(s)
Péptidos de Penetración Celular , Animales , Cationes , Péptidos de Penetración Celular/química , Ratones
9.
Methods ; 191: 23-31, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32334080

RESUMEN

Genetically modified mouse models are essential for in vivo investigation of gene function and human disease research. Targeted mutations can be introduced into mouse embryos using genome editing technology such as CRISPR-Cas. Although mice with small indel mutations can be produced, the production of mice carrying large deletions or gene fragment knock-in alleles remains inefficient. We introduced the nuclear localisation property of Cdt1 protein into the CRISPR-Cas system for efficient production of genetically engineered mice. Mouse Cdt1-connected Cas9 (Cas9-mC) was present in the nucleus of HEK293T cells and mouse embryos. Cas9-mC induced a bi-allelic full deletion of Dmd, GC-rich fragment knock-in, and floxed allele knock-in with high efficiency compared to standard Cas9. These results indicate that Cas9-mC is a useful tool for producing mouse models carrying targeted mutations.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Ratones , Cigoto
10.
Nature ; 539(7629): 378-383, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27806374

RESUMEN

Sleep is conserved from invertebrates to vertebrates, and is tightly regulated in a homeostatic manner. The molecular and cellular mechanisms that determine the amount of rapid eye movement sleep (REMS) and non-REMS (NREMS) remain unknown. Here we identify two dominant mutations that affect sleep and wakefulness by using an electroencephalogram/electromyogram-based screen of randomly mutagenized mice. A splicing mutation in the Sik3 protein kinase gene causes a profound decrease in total wake time, owing to an increase in inherent sleep need. Sleep deprivation affects phosphorylation of regulatory sites on the kinase, suggesting a role for SIK3 in the homeostatic regulation of sleep amount. Sik3 orthologues also regulate sleep in fruitflies and roundworms. A missense, gain-of-function mutation in the sodium leak channel NALCN reduces the total amount and episode duration of REMS, apparently by increasing the excitability of REMS-inhibiting neurons. Our results substantiate the use of a forward-genetics approach for studying sleep behaviours in mice, and demonstrate the role of SIK3 and NALCN in regulating the amount of NREMS and REMS, respectively.


Asunto(s)
Canales Iónicos/genética , Mutagénesis , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Serina-Treonina Quinasas/genética , Sueño/genética , Sueño/fisiología , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Secuencia Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Electroencefalografía , Electromiografía , Homeostasis/genética , Canales Iónicos/química , Canales Iónicos/metabolismo , Proteínas de la Membrana , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Empalme del ARN/genética , Distribución Aleatoria , Privación de Sueño , Sueño REM/genética , Sueño REM/fisiología , Factores de Tiempo , Vigilia/genética , Vigilia/fisiología
11.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328622

RESUMEN

GCN1 is an evolutionarily-conserved ribosome-binding protein that mediates the amino acid starvation response as well as the ribotoxic stress response. We previously demonstrated that Gcn1 mutant mice lacking the GCN2-binding domain suffer from growth retardation and postnatal lethality via GCN2-independent mechanisms, while Gcn1-null mice die early in embryonic development. In this study, we explored the role of GCN1 in adult mice by generating tamoxifen-inducible conditional knockout (CKO) mice. Unexpectedly, the Gcn1 CKO mice showed body weight loss during tamoxifen treatment, which gradually recovered following its cessation. They also showed decreases in liver weight, hepatic glycogen and lipid contents, blood glucose and non-esterified fatty acids, and visceral white adipose tissue weight with no changes in food intake and viability. A decrease of serum VLDL suggested that hepatic lipid supply to the peripheral tissues was primarily impaired. Liver proteomic analysis revealed the downregulation of mitochondrial ß-oxidation that accompanied increases of peroxisomal ß-oxidation and aerobic glucose catabolism that maintain ATP levels. These findings show the involvement of GCN1 in hepatic lipid metabolism during tamoxifen treatment in adult mice.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Animales , Lípidos , Hígado/metabolismo , Glucógeno Hepático/metabolismo , Ratones , Ratones Noqueados , Factores de Elongación de Péptidos/metabolismo , Proteínas Serina-Treonina Quinasas , Proteómica , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tamoxifeno/efectos adversos , Tamoxifeno/metabolismo , Transactivadores/metabolismo , Pérdida de Peso
12.
Glycobiology ; 31(5): 557-570, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33242079

RESUMEN

Sialic acids are unique sugars with negative charge and exert various biological functions such as regulation of immune systems, maintenance of nerve tissues and expression of malignant properties of cancers. Alpha 2,6 sialylated N-glycans, one of representative sialylation forms, are synthesized by St6gal1 or St6gal2 gene products in humans and mice. Previously, it has been reported that St6gal1 gene is ubiquitously expressed in almost all tissues. On the other hand, St6gal2 gene is expressed mainly in the embryonic and perinatal stages of brain tissues. However, roles of St6gal2 gene have not been clarified. Expression profiles of N-glycans with terminal α2,6 sialic acid generated by St6gal gene products in the brain have never been directly studied. Using conventional lectin blotting and novel sialic acid linkage-specific alkylamidationmass spectrometry method (SALSA-MS), we investigated the function and expression of St6gal genes and profiles of their products in the adult mouse brain by establishing KO mice lacking St6gal1 gene, St6gal2 gene, or both of them (double knockout). Consequently, α2,6-sialylated N-glycans were scarcely detected in adult mouse brain tissues, and a majority of α2,6-sialylated glycans found in the mouse brain were O-linked glycans. The majority of these α2,6-sialylated O-glycans were shown to be disialyl-T antigen and sialyl-(6)T antigen by mass spectrometry analysis. Moreover, it was revealed that a few α2,6-sialylated N-glycans were produced by the action of St6gal1 gene, despite both St6gal1 and St6gal2 genes being expressed in the adult mouse brain. In the future, where and how sialylated O-linked glycoproteins function in the brain tissue remains to be clarified.


Asunto(s)
Encéfalo/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Sialiltransferasas/genética , Animales , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sialiltransferasas/deficiencia , Sialiltransferasas/metabolismo , beta-D-Galactósido alfa 2-6-Sialiltransferasa
13.
Am J Hum Genet ; 103(3): 440-447, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30146126

RESUMEN

Inherited bone-marrow-failure syndromes (IBMFSs) include heterogeneous genetic disorders characterized by bone-marrow failure, congenital anomalies, and an increased risk of malignancy. Many lines of evidence have suggested that p53 activation might be central to the pathogenesis of IBMFSs, including Diamond-Blackfan anemia (DBA) and dyskeratosis congenita (DC). However, the exact role of p53 activation in each clinical feature remains unknown. Here, we report unique de novo TP53 germline variants found in two individuals with an IBMFS accompanied by hypogammaglobulinemia, growth retardation, and microcephaly mimicking DBA and DC. TP53 is a tumor-suppressor gene most frequently mutated in human cancers, and occasional germline variants occur in Li-Fraumeni cancer-predisposition syndrome. Most of these mutations affect the core DNA-binding domain, leading to compromised transcriptional activities. In contrast, the variants found in the two individuals studied here caused the same truncation of the protein, resulting in the loss of 32 residues from the C-terminal domain (CTD). Unexpectedly, the p53 mutant had augmented transcriptional activities, an observation not previously described in humans. When we expressed this mutant in zebrafish and human-induced pluripotent stem cells, we observed impaired erythrocyte production. These findings together with close similarities to published knock-in mouse models of TP53 lacking the CTD demonstrate that the CTD-truncation mutations of TP53 cause IBMFS, providing important insights into the previously postulated connection between p53 and IBMFSs.


Asunto(s)
Enfermedades de la Médula Ósea/genética , Médula Ósea/patología , Células Germinativas/patología , Mutación/genética , Proteína p53 Supresora de Tumor/genética , Adolescente , Adulto , Agammaglobulinemia/genética , Anemia de Diamond-Blackfan/genética , Animales , Preescolar , Eritrocitos/patología , Femenino , Trastornos del Crecimiento/genética , Humanos , Células Madre Pluripotentes Inducidas/patología , Lactante , Recién Nacido , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven , Pez Cebra
14.
Blood ; 133(23): 2495-2506, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-30917958

RESUMEN

Recurrent inactivating mutations have been identified in the X-linked plant homeodomain finger protein 6 (PHF6) gene, encoding a chromatin-binding transcriptional regulator protein, in various hematological malignancies. However, the role of PHF6 in normal hematopoiesis and its tumor-suppressor function remain largely unknown. We herein generated mice carrying a floxed Phf6 allele and inactivated Phf6 in hematopoietic cells at various developmental stages. The Phf6 deletion in embryos augmented the capacity of hematopoietic stem cells (HSCs) to proliferate in cultures and reconstitute hematopoiesis in recipient mice. The Phf6 deletion in neonates and adults revealed that cycling HSCs readily acquired an advantage in competitive repopulation upon the Phf6 deletion, whereas dormant HSCs only did so after serial transplantations. Phf6-deficient HSCs maintained an enhanced repopulating capacity during serial transplantations; however, they did not induce any hematological malignancies. Mechanistically, Phf6 directly and indirectly activated downstream effectors in tumor necrosis factor α (TNFα) signaling. The Phf6 deletion repressed the expression of a set of genes associated with TNFα signaling, thereby conferring resistance against the TNFα-mediated growth inhibition on HSCs. Collectively, these results not only define Phf6 as a novel negative regulator of HSC self-renewal, implicating inactivating PHF6 mutations in the pathogenesis of hematological malignancies, but also indicate that a Phf6 deficiency alone is not sufficient to induce hematopoietic transformation.


Asunto(s)
Autorrenovación de las Células , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Proteínas Represoras/metabolismo , Animales , Proliferación Celular/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
15.
Proc Natl Acad Sci U S A ; 115(41): 10458-10463, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30254177

RESUMEN

Sleep is an evolutionally conserved behavior from vertebrates to invertebrates. The molecular mechanisms that determine daily sleep amounts and the neuronal substrates for homeostatic sleep need remain unknown. Through a large-scale forward genetic screen of sleep behaviors in mice, we previously demonstrated that the Sleepy mutant allele of the Sik3 protein kinase gene markedly increases daily nonrapid-eye movement sleep (NREMS) amounts and sleep need. The Sleepy mutation deletes the in-frame exon 13 encoding a peptide stretch encompassing S551, a known PKA recognition site in SIK3. Here, we demonstrate that single amino acid changes at SIK3 S551 (S551A and S551D) reproduce the hypersomnia phenotype of the Sleepy mutant mice. These mice exhibit increased NREMS amounts and inherently increased sleep need, the latter demonstrated by increased duration of individual NREMS episodes and higher EEG slow-wave activity during NREMS. At the molecular level, deletion or mutation at SIK3 S551 reduces PKA recognition and abolishes 14-3-3 binding. Our results suggest that the evolutionally conserved S551 of SIK3 mediates, together with PKA and 14-3-3, the intracellular signaling crucial for the regulation of daily sleep amounts and sleep need at the organismal level.


Asunto(s)
Mutación , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Sueño/fisiología , Vigilia/fisiología , Animales , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética
16.
Genesis ; 58(7): e23367, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32293787

RESUMEN

Germ cell development is essential for maintaining reproduction in animals. In postpubertal females, oogenesis is a highly complicated event for producing fertilizable oocytes. It starts when dormant primordial oocytes undergo activation to become growing oocytes. In postpubertal males, spermatogenesis is a differentiation process for producing sperm from spermatogonial stem cells. To obtain full understanding of the molecular mechanisms underlying germ cell development, the Cre/loxP system has been widely applied for conditional knock-out mouse studies. In this study, we established a novel knock-in mouse line, B6-Ddx4 em1(CreERT2)Utr , which expresses CreERT2 recombinase under the control of the endogenous DEAD-box helicase 4 (Ddx4) gene promoter. Ddx4 was specifically expressed in both female and male germ cell lineages. We mated the CreERT2 mice with R26GRR mice, expressing enhanced green fluorescent protein (EGFP) and tDsRed before and after Cre recombination. We found tDsRed signals in the testes and ovaries of tamoxifen-treated B6-Ddx4 em1(CreERT2)Utr ::R26GRR mice, but not in untreated mice. Immunostaining of their ovaries clearly showed that Cre recombination occurred in all oocytes at every follicle stage. We also found 100% Cre recombination efficiency in male germ cells via the progeny test. In summary, our results indicate that B6-Ddx4 em1(CreERT2)Utr is beneficial for studying female and male germ cell development.


Asunto(s)
Linaje de la Célula , ARN Helicasas DEAD-box/genética , Técnicas de Sustitución del Gen/métodos , Células Germinativas/metabolismo , Integrasas/genética , Animales , ARN Helicasas DEAD-box/metabolismo , Femenino , Células Germinativas/citología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas
17.
J Lipid Res ; 61(1): 54-69, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31645370

RESUMEN

The bile acid (BA) composition in mice is substantially different from that in humans. Chenodeoxycholic acid (CDCA) is an end product in the human liver; however, mouse Cyp2c70 metabolizes CDCA to hydrophilic muricholic acids (MCAs). Moreover, in humans, the gut microbiota converts the primary BAs, cholic acid and CDCA, into deoxycholic acid (DCA) and lithocholic acid (LCA), respectively. In contrast, the mouse Cyp2a12 reverts this action and converts these secondary BAs to primary BAs. Here, we generated Cyp2a12 KO, Cyp2c70 KO, and Cyp2a12/Cyp2c70 double KO (DKO) mice using the CRISPR-Cas9 system to study the regulation of BA metabolism under hydrophobic BA composition. Cyp2a12 KO mice showed the accumulation of DCAs, whereas Cyp2c70 KO mice lacked MCAs and exhibited markedly increased hepatobiliary proportions of CDCA. In DKO mice, not only DCAs or CDCAs but also DCAs, CDCAs, and LCAs were all elevated. In Cyp2c70 KO and DKO mice, chronic liver inflammation was observed depending on the hepatic unconjugated CDCA concentrations. The BA pool was markedly reduced in Cyp2c70 KO and DKO mice, but the FXR was not activated. It was suggested that the cytokine/c-Jun N-terminal kinase signaling pathway and the pregnane X receptor-mediated pathway are the predominant mechanisms, preferred over the FXR/small heterodimer partner and FXR/fibroblast growth factor 15 pathways, for controlling BA synthesis under hydrophobic BA composition. From our results, we hypothesize that these KO mice can be novel and useful models for investigating the roles of hydrophobic BAs in various human diseases.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Ácidos y Sales Biliares/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Modelos Animales de Enfermedad , Esteroide Hidroxilasas/genética , Animales , Hidrocarburo de Aril Hidroxilasas/deficiencia , Hidrocarburo de Aril Hidroxilasas/metabolismo , Ácidos y Sales Biliares/química , Ácido Quenodesoxicólico/química , Ácido Quenodesoxicólico/metabolismo , Sistema Enzimático del Citocromo P-450/deficiencia , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Esteroide Hidroxilasas/deficiencia , Esteroide Hidroxilasas/metabolismo
18.
Mol Biol Rep ; 47(2): 1491-1498, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31811500

RESUMEN

Safe harbor loci allow predicable integration of a transgene into the genome without perturbing endogenous gene activity and for decades have been exploited in the mouse to investigate gene function, generate humanised models and create tissue specific reporter and Cre recombinase expressing lines. Herein, we show that the murine Hipp11 intergenic region can facilitate highly efficient integration of a large transgene-the human CD1A promoter and coding region-by means of CRISPR-Cas9 mediated homology directed repair. The data shows that the single copy human CD1A transgene is faithfully expressed in an inducible manner in homozygous animals in both macrophage and dendritic cells. Our results validate the Hipp11 intergenic region as being a highly amenable target site for functional transgene integration in mouse.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Intergénico/genética , Expresión Génica , Transgenes , Animales , Antígenos CD1/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Sitios Genéticos , Genoma , Humanos , Ratones Transgénicos
19.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937976

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease that is caused by the dysregulation of alveolar epithelial type II cells (AEC II). The mechanisms involved in the progression of IPF remain incompletely understood, although the immune response accompanied by p38 mitogen-activated protein kinase (MAPK) activation may contribute to some of them. This study aimed to examine the association of p38 activity in the lungs with bleomycin (BLM)-induced pulmonary fibrosis and its transcriptomic profiling. Accordingly, we evaluated BLM-induced pulmonary fibrosis during an active fibrosis phase in three genotypes of mice carrying stepwise variations in intrinsic p38 activity in the AEC II and performed RNA sequencing of their lungs. Stepwise elevation of p38 signaling in the lungs of the three genotypes was correlated with increased severity of BLM-induced pulmonary fibrosis exhibiting reduced static compliance and higher collagen content. Transcriptome analysis of these lung samples also showed that the enhanced p38 signaling in the lungs was associated with increased transcription of the genes driving the p38 MAPK pathway and differentially expressed genes elicited by BLM, including those related to fibrosis as well as the immune system. Our findings underscore the significance of p38 MAPK in the progression of pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática/genética , Pulmón/metabolismo , Transcriptoma/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Células Epiteliales Alveolares/metabolismo , Animales , Bleomicina/farmacología , Colágeno/metabolismo , Femenino , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
20.
Angew Chem Int Ed Engl ; 59(45): 19990-19998, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32557993

RESUMEN

Endocytic pathways are practical routes for the intracellular delivery of biomacromolecules. Along with this, effective strategies for endosomal cargo release into the cytosol are desired to achieve successful delivery. Focusing on compositional differences between the cell and endosomal membranes and the pH decrease within endosomes, we designed the lipid-sensitive and pH-responsive endosome-lytic peptide HAad. This peptide contains aminoadipic acid (Aad) residues, which serve as a safety catch for preferential permeabilization of endosomal membranes over cell membranes, and His-to-Ala substitutions enhance the endosomolytic activity. The ability of HAad to destabilize endosomal membranes was supported by model studies using large unilamellar vesicles (LUVs) and by increased intracellular delivery of biomacromolecules (including antibodies) into live cells. Cerebral ventricle injection of Cre recombinase with HAad led to Cre/loxP recombination in a mouse model, thus demonstrating potential applicability of HAad in vivo.


Asunto(s)
Endosomas/metabolismo , Péptidos/metabolismo , Membrana Celular/metabolismo , Endocitosis , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA