Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Malar J ; 21(1): 62, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193607

RESUMEN

BACKGROUND: Malaria continues to be a major public health problem in the Northeastern part of India despite the implementation of vector control measures and changes in drug policies. To develop successful vaccines against malaria, it is important to assess the diversity of vaccine candidate antigens in field isolates. This study was done to assess the diversity of Plasmodium falciparum AMA-1 vaccine candidate antigen in a malaria-endemic region of Tripura in Northeast India and compare it with previously reported global isolates with a view to assess the feasibility of developing a universal vaccine based on this antigen. METHODS: Patients with fever and malaria-like illness were screened for malaria and P. falciparum positive cases were recruited for the current study. The diversity of PfAMA-1 vaccine candidate antigen was evaluated by nested PCR and RFLP. A selected number of samples were sequenced using the Sanger technique. RESULTS: Among 56 P. falciparum positive isolates, Pfama-1 was successfully amplified in 75% (n = 42) isolates. Allele frequencies of PfAMA-1 antigen were 16.6% (n = 7) for 3D7 allele and 33.3% (n = 14) in both K1 and HB3 alleles. DNA sequencing revealed 13 haplotypes in the Pfama-1 gene including three unique haplotypes not reported earlier. No unique amino-acid substitutions were found. Global analysis with 2761 sequences revealed 435 haplotypes with a very complex network composition and few clusters. Nucleotide diversity for Tripura (0.02582 ± 0.00160) showed concordance with South-East Asian isolates while recombination parameter (Rm = 8) was lower than previous reports from India. Population genetic structure showed moderate differentiation. CONCLUSIONS: Besides documenting all previously reported allelic forms of the vaccine candidate PfAMA-1 antigen of P. falciparum, new haplotypes not reported earlier, were found in Tripura. Neutrality tests indicate that the Pfama-1 population in Tripura is under balancing selection. This is consistent with global patterns. However, the high haplotype diversity observed in the global Pfama-1 network analysis indicates that designing a universal vaccine based on this antigen may be difficult. This information adds to the existing database of genetic diversity of field isolates of P. falciparum and may be helpful in the development of more effective vaccines against the parasite.


Asunto(s)
Antígenos de Protozoos/genética , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias/genética , Variación Genética , Haplotipos , Humanos , India , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Proteínas de la Membrana , Plasmodium falciparum/genética , Polimorfismo de Longitud del Fragmento de Restricción , Desarrollo de Vacunas
2.
Intervirology ; 65(4): 188-194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35640537

RESUMEN

INTRODUCTION: Human papillomaviruses (HPVs), Epstein-Barr virus (EBV), and mouse mammary tumor virus-like virus (MMTV-like virus) can be present and contribute to breast cancer development and progression. However, the role of these oncoviruses and their crosstalk in breast cancer is still unclear. METHODS: We explored the co-presence of high-risk HPVs, EBV, and MMTV-like virus in 74 breast cancer samples from Qatar using PCR. RESULTS: We found the presence of HPV and EBV in 65% and 49% of our cancer sample cohorts; 47% of the samples are positive for both oncoviruses. The MMTV-like virus alone was detected in 15% of the samples with no significant association with clinicopathological features. The three oncoviruses were co-present in 14% of the cases; no significant association was noted between the co-presence of these viruses and the clinicopathological features. CONCLUSION: Despite the presence of the oncoviruses, additional studies are necessary to understand their interactions in human breast carcinogenesis.


Asunto(s)
Alphapapillomavirus , Neoplasias de la Mama , Infecciones por Virus de Epstein-Barr , Ratones , Animales , Humanos , Femenino , Herpesvirus Humano 4/genética , Virus del Tumor Mamario del Ratón/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/epidemiología , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/etiología , Neoplasias de la Mama/patología , Incidencia , Qatar/epidemiología , Papillomaviridae/genética
3.
Parasitol Res ; 121(6): 1559-1571, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35435512

RESUMEN

Vertebrate cells have evolved an elaborate multi-tiered intracellular surveillance system linked to downstream antimicrobial effectors to defend themselves from pathogens. This cellular self-defense system is referred to as cell-autonomous immunity. A wide array of cell-autonomous mechanisms operates to control intracellular pathogens including protozoa such as Toxoplasma gondii. Cell-autonomous immunity consists of antimicrobial defenses that are constitutively active in cells and those that are inducible typically in response to host cell activation. The IFN family of cytokines is an important stimulator of inducible cell-autonomous immunity. There are several hundred interferon-stimulated genes (ISGs); many of them have known roles in inducible cell-autonomous immune mechanisms. The importance of IFN-γ activation of cell-autonomous immunity is evidenced by the fact that many intracellular pathogens have evolved a diversity of molecular mechanisms to inhibit activation of infected cells through the JAK-STAT pathway in response to IFN-γ. The goal of this review is to provide a broad framework for understanding the elaborate system of cell-autonomous immunity that acts as a first line of defense between a host and intracellular parasites.


Asunto(s)
Interferón gamma , Toxoplasma , Inmunidad Innata , Quinasas Janus/metabolismo , Factores de Transcripción STAT , Transducción de Señal
4.
J Transl Med ; 18(1): 288, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727491

RESUMEN

BACKGROUND: In the past decade, cervical cancer has gone from being the second to the fourth most common cancer in women worldwide, but remains the second most common in developing countries. This cancer is most commonly caused by high-risk types of human papillomavirus (HPV), mainly type 16 (HPV16), which are sexually transmitted. This study aimed to investigate the usefulness of a cyclic synthetic peptide designed from the major L1 capsid protein of HPV16 for detecting anti-HPV16 antibodies. METHODS: We designed and synthetized a peptide that corresponds to the full sequence of the surface-exposed FG loop. We tested the antigenicity of the linear and the cyclic peptides against HPV16 L1 monoclonal antibodies. We used ELISA to detect anti-peptide antibodies in sera and cervical secretions of 179 Tunisian women, and we applied polymerase chain reaction and direct sequencing methods to detect and genotype HPV DNA. RESULTS: Both the linear and the cyclic peptides were recognized by the same neutralizing monoclonal antibodies, but the cyclic peptide was more reactive with human sera. The prevalence of the anti-peptide antibodies in sera was higher in women with low-grade squamous intraepithelial lesions (LGSIL) than in women with high-grade squamous intraepithelial lesions (HGSIL) (44% and 15%, respectively). This contrasts with HPV16 DNA prevalence. Compared to women from the general population, systemic IgG prevalence was significantly higher among sex workers (25%; P = 0.002) and women with LGSIL (44%; P = 0.001). In addition, systemic IgA and cervical IgG prevalence was higher among sex workers only (P = 0.002 and P = 0.001, respectively). We did not observe anti-peptide IgG antibodies in women with a current HPV16 infection. CONCLUSION: Anti-peptide IgG in sera or in cervical secretions could be markers of an effective natural immunization against HPV16. This may open novel perspectives for monitoring vaccinated women and for the design of synthetic peptide-based vaccines.


Asunto(s)
Papillomavirus Humano 16 , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Anticuerpos Antivirales , Cápside , Proteínas de la Cápside , Femenino , Humanos , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/epidemiología , Péptidos Cíclicos , Prevalencia , Neoplasias del Cuello Uterino/diagnóstico
5.
Cancer Cell Int ; 20: 107, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265596

RESUMEN

BACKGROUND: Infections by both human oncoviruses, human Papillomaviruses (HPV) and Epstein-Barr virus (EBV) are very common in the adult human population and are associated with various malignancies. While HPV is generally transmitted sexually or via skin-to-skin contact, EBV is frequently transmitted by oral secretions, blood transfusions and organ transplants. This study aims to determine the prevalence and circulating genotypes of HPV and EBV in healthy blood donors in Qatar. METHODS: We explored the co-prevalence of high-risk HPVs and EBV in 378 males and only 7 females blood donors of different nationalities (mainly from Qatar, Egypt, Syria, Jordan, Pakistan, and India) residing in Qatar, using polymerase chain reaction (PCR). DNA was extracted from the buffy coat and genotyping was performed using PCR and nested-PCR targeting E6 and E7 as well as LMP-1 of HPV and EBV, respectively. RESULTS: We found that from the total number of 385 cases of healthy blood donors studied, 54.8% and 61% of the samples are HPVs and EBV positive, respectively. Additionally, our data revealed that the co-presence of both high-risk HPVs and EBV is 40.4% of the total samples. More significantly, this study pointed out for the first time that the most frequent high-risk HPV types in Qatar are 59 (54.8%), 31 (53.7%), 52 (49.1%), 51 (48.6%), 58 (47%) and 35 (45.5%), while the most commonly expressed low-risk HPV types are 53 (50.6%), 11 (45.5), 73 (41.7%) and 6 (41.3%), with all the cases showing multiple HPVs infection. CONCLUSION: In this study, we demonstrated for the first time that HPV and EBV are commonly co-present in healthy blood donors in Qatar. On the other hand, it is important to highlight that these oncoviruses can also be co-present in several types of human cancers where they can cooperate in the initiation and/or progression of these cancers. Therefore, more studies regarding the co-presence of these oncoviruses and their interaction are necessary to understand their cooperative role in human diseases.

6.
BMC Infect Dis ; 20(1): 671, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32933490

RESUMEN

BACKGROUND: The increasing antimalarial drug resistance is a significant hindrance to malaria control and elimination programs. For the last six decades, chloroquine (CQ) plus pyrimethamine remains the first-line treatment for P. vivax malaria. Regions where both P. falciparum and P. vivax co-exist, P. vivax is exposed to antifolate drugs due to either misdiagnosis or improper treatment that causes selective drug pressure to evolve. Therefore, the present study aims to estimate antimalarial drug resistance among the complicated and uncomplicated P. vivax patients. METHODS: A total of 143 P. vivax malaria positive patients were enrolled in this study, and DNA was isolated from their blood samples. Pvcrt-o, Pvmdr-1, Pvdhps, and Pvdhfr genes were PCRs amplified, and drug resistance-associated gene mutations were analyzed. Statistical analysis of the drug resistance genes and population diversity was performed using MEGA vs. 7.0.21 and DnaSP v software. RESULTS: Among the CQ resistance marker gene Pvcrt-o, the prevalence of K10 insertion was 17.5% (7/40) and 9.5% (7/73) of complicated and uncomplicated P vivax group isolates respectively. In Pvmdr-1, double mutant haplotype (M958/L1076) was found in 99% of the clinical isolates. Among the pyrimethamine resistance-associated gene Pvdhfr, the double mutant haplotype I13P33F57R58T61N117I173 was detected in 23% (11/48) in complicated and 20% (17/85) in uncomplicated group isolates. In the sulphadoxine resistance-associated Pvdhps gene, limited polymorphism was observed with the presence of a single mutant (D459A) among 16 and 5% of the clinical isolates in the complicated and uncomplicated group respectively. CONCLUSION: The study presents the situations of polymorphism in the antimalarial drug resistance-associated genes and emphasizes the need for regular surveillance. It is imperative for the development of suitable antimalarial drug policy in India.


Asunto(s)
Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Malaria Vivax/tratamiento farmacológico , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Adolescente , Niño , Preescolar , Cloroquina/uso terapéutico , ADN Protozoario/genética , ADN Protozoario/metabolismo , Femenino , Antagonistas del Ácido Fólico/uso terapéutico , Haplotipos , Humanos , India , Masculino , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium vivax/aislamiento & purificación , Polimorfismo de Nucleótido Simple , Adulto Joven
7.
BMC Infect Dis ; 20(1): 413, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32539801

RESUMEN

BACKGROUND: Successful control programs have impeded local malaria transmission in almost all Gulf Cooperation Council (GCC) countries: Qatar, Bahrain, Kuwait, Oman, the United Arab Emirates (UAE) and Saudi Arabia. Nevertheless, a prodigious influx of imported malaria via migrant workers sustains the threat of local transmission. Here we examine the origin of imported malaria in Qatar, assess genetic diversity and the prevalence of drug resistance genes in imported Plasmodium falciparum, and finally, address the potential for the reintroduction of local transmission. METHODS: This study examined imported malaria cases reported in Qatar, between 2013 and 2016. We focused on P. falciparum infections and estimated both total parasite and gametocyte density, using qPCR and qRT-PCR, respectively. We also examined ten neutral microsatellites and four genes associated with drug resistance, Pfmrp1, Pfcrt, Pfmdr1, and Pfkelch13, to assess the genetic diversity of imported P. falciparum strains, and the potential for propagating drug resistance genotypes respectively. RESULTS: The majority of imported malaria cases were P. vivax, while P. falciparum and mixed species infections (P. falciparum / P. vivax) were less frequent. The primary origin of P. vivax infection was the Indian subcontinent, while P. falciparum was mostly presented by African expatriates. Imported P. falciparum strains were highly diverse, carrying multiple genotypes, and infections also presented with early- and late-stage gametocytes. We observed a high prevalence of mutations implicated in drug resistance among these strains, including novel SNPs in Pfkelch13. CONCLUSIONS: The influx of genetically diverse P. falciparum, with multiple drug resistance markers and a high capacity for gametocyte production, represents a threat for the reestablishment of drug-resistant malaria into GCC countries. This scenario highlights the impact of mass international migration on the reintroduction of malaria to areas with absent or limited local transmission.


Asunto(s)
Enfermedades Transmisibles Importadas/transmisión , Resistencia a Medicamentos/genética , Malaria/transmisión , Plasmodium falciparum/genética , Enfermedades Transmisibles Importadas/epidemiología , Enfermedades Transmisibles Importadas/parasitología , Variación Genética , Genotipo , Humanos , Malaria/epidemiología , Malaria/parasitología , Carga de Parásitos , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Prevalencia , Qatar/epidemiología
8.
J Antimicrob Chemother ; 74(12): 3497-3504, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504587

RESUMEN

OBJECTIVES: To investigate the in vitro activity of ceftazidime/avibactam and ceftolozane/tazobactam against clinical isolates of MDR Pseudomonas aeruginosa from Qatar, as well as the mechanisms of resistance. METHODS: MDR P. aeruginosa isolated between October 2014 and September 2015 from all public hospitals in Qatar were included. The BD PhoenixTM system was used for identification and initial antimicrobial susceptibility testing, while Liofilchem MIC Test Strips (Liofilchem, Roseto degli Abruzzi, Italy) were used for confirmation of ceftazidime/avibactam and ceftolozane/tazobactam susceptibility. Ten ceftazidime/avibactam- and/or ceftolozane/tazobactam-resistant isolates were randomly selected for WGS. RESULTS: A total of 205 MDR P. aeruginosa isolates were included. Of these, 141 (68.8%) were susceptible to ceftazidime/avibactam, 129 (62.9%) were susceptible to ceftolozane/tazobactam, 121 (59.0%) were susceptible to both and 56 (27.3%) were susceptible to neither. Twenty (9.8%) isolates were susceptible to ceftazidime/avibactam but not to ceftolozane/tazobactam and only 8 (3.9%) were susceptible to ceftolozane/tazobactam but not to ceftazidime/avibactam. Less than 50% of XDR isolates were susceptible to ceftazidime/avibactam or ceftolozane/tazobactam. The 10 sequenced isolates belonged to six different STs and all produced AmpC and OXA enzymes; 5 (50%) produced ESBL and 4 (40%) produced VIM enzymes. CONCLUSIONS: MDR P. aeruginosa susceptibility rates to ceftazidime/avibactam and ceftolozane/tazobactam were higher than those to all existing antipseudomonal agents, except colistin, but were less than 50% in extremely resistant isolates. Non-susceptibility to ceftazidime/avibactam and ceftolozane/tazobactam was largely due to the production of ESBL and VIM enzymes. Ceftazidime/avibactam and ceftolozane/tazobactam are possible options for some patients with MDR P. aeruginosa in Qatar.


Asunto(s)
Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Ceftazidima/farmacología , Cefalosporinas/farmacología , Farmacorresistencia Bacteriana Múltiple , Pseudomonas aeruginosa/efectos de los fármacos , Tazobactam/farmacología , Combinación de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Estudios Prospectivos , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Qatar , Secuenciación Completa del Genoma
9.
Malar J ; 18(1): 308, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492135

RESUMEN

BACKGROUND: Malaria is one of the important vector-borne diseases with high fatality rates in tropical countries. The pattern of emergence and spread of novel antigenic variants, leading to escape of vaccine-induced immunity might be factors responsible for severe malaria. A high level of polymorphism has been reported among malarial antigens which are under selection pressure imposed by host immunity. There are limited reports available on comparative stage-specific genetic diversity among Plasmodium vivax candidate genes in complicated vivax malaria. The present study was planned to study genetic diversity (Pvcsp and Pvs25) among complicated and uncomplicated P. vivax isolates. METHODS: Pvcsp and Pvs2-specific PCRs and DNA sequencing were performed on P. vivax PCR positive samples. Genetic diversity was analysed using appropriate software. RESULTS: The present study was carried out on 143 P. vivax clinical isolates, collected from Postgraduate Institute of Medical Education and Research, Chandigarh. Among the classic and variant types of Pvcsp, the VK210 (99%; 115/116) was found to be predominant in both complicated and uncomplicated group isolates. Out of the various peptide repeat motifs (PRMs) observed, GDRADGQPA (PRM1) and GDRAAGQPA (PRM2) was the most widely distributed among the P. vivax isolates. Whereas among the Pvs25 isolates, 100% of double mutants (E97Q/I130T) in both the complicated (45/45) as well as in the uncomplicated (81/81) group was observed. CONCLUSION: An analysis of genetic variability enables an understanding of the role of genetic variants in severe vivax malaria.


Asunto(s)
Antígenos de Protozoos/genética , Antígenos de Superficie/genética , Variación Genética , Vacunas contra la Malaria/genética , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Adolescente , Adulto , Niño , Femenino , Humanos , India , Masculino , Adulto Joven
10.
J Immunol ; 199(2): 633-642, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28607116

RESUMEN

Babesiosis is a tick-borne zoonosis caused by protozoans of the genus Babesia, apicomplexan parasites that replicate within erythrocytes. However, unlike related Plasmodium species, the pathogenesis of Babesia infection remains poorly understood. The primary etiological agent of babesiosis in the United States is B. microti. In healthy individuals, tick-transmitted infection with Babesia causes no specific clinical manifestations, with many having no symptoms at all. However, even in asymptomatic people, a Babesia carriage state can be established that can last up to a year or more. Current blood bank screening methods do not identify infected donors, and Babesia parasites survive blood-banking procedures and storage. Thus, Babesia can also be transmitted by infected blood, and it is currently the number one cause of reportable transfusion-transmitted infection in the United States. Despite a significant impact on human health, B. microti remains understudied. In this study, we evaluated the course of Babesia infection in three strains of mice, C57BL/6J, BALB/cJ, and C3H-HeJ, and examined the contribution of multiple immune parameters, including TLRs, B cells, CD4+ cells, IFN-γ, and NO, on the level of parasitemia and parasite clearance during acute babesiosis. We found that B. microti reaches high parasitemia levels during the first week of infection in all three mice strains before resolving spontaneously. Our results indicate that resolution of babesiosis requires CD4 T cells and a novel mechanism of parasite killing within infected erythrocytes.


Asunto(s)
Babesia microti/inmunología , Babesiosis/inmunología , Linfocitos T CD4-Positivos/inmunología , Eritrocitos/parasitología , Animales , Linfocitos B/inmunología , Babesiosis/epidemiología , Babesiosis/parasitología , Babesiosis/transmisión , Transfusión Sanguínea , Humanos , Interferón gamma/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/metabolismo , Parasitemia/sangre , Parasitemia/parasitología , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Estados Unidos/epidemiología , Zoonosis
11.
J Transl Med ; 16(1): 272, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30286756

RESUMEN

BACKGROUND: In the recent years Plasmodium vivax has been reported to cause severe infections associated with mortality. Clinical evaluation has limited accuracy for the early identification of the patients progressing towards the fatal condition. Researchers have tried to identify the serum and the plasma-based indicators of the severe malaria. Discovery of MicroRNA (miRNA) has opened up an era of identification of early biomarkers for various infectious and non-infectious diseases. MicroRNAs (miRNA) are the small non-coding RNA molecules of length 19-24 nts and are responsible for the regulation of the majority of human gene expressions at post transcriptional level. METHODS: We identified the differentially expressed miRNAs by microarray and validated the selected miRNAs by qRT-PCR. We assessed the diagnostic potential of these up-regulated miRNAs for complicated P. vivax malaria. Futher, the bioinformtic analysis was performed to construct protein-protein and mRNA-miRNA networks to identify highly regulated miRNA. RESULTS: In the present study, utility of miRNA as potential biomarker of complicated P. vivax malaria was explored. A total of 276 miRNAs were found to be differentially expressed by miRNA microarray and out of which 5 miRNAs (hsa-miR-7977, hsa-miR-28-3p, hsa-miR-378-5p, hsa-miR-194-5p and hsa-miR-3667-5p) were found to be significantly up-regulated in complicated P. vivax malaria patients using qRT-PCR. The diagnostic potential of these 5 miRNAs were found to be significant with sensitivity and specificity of 60-71% and 69-81% respectively and area under curve (AUC) of 0.7 (p < 0.05). Moreover, in silico analysis of the common targets of up-regulated miRNAs revealed UBA52 and hsa-miR-7977 as majorly regulated hubs in the PPI and mRNA-miRNA networks, suggesting their putative role in complicated P. vivax malaria. CONCLUSION: miR-7977 might act as a potential biomarker for differentiating complicated P. vivax malaria from uncomplicated type. The elevated levels of miR-7977 may have a role to play in the disease pathology through UBA52 or TGF-beta signalling pathway.


Asunto(s)
Biomarcadores/sangre , Malaria Vivax/sangre , Malaria Vivax/diagnóstico , Tamizaje Masivo , Plasmodium vivax/fisiología , Adolescente , Adulto , Algoritmos , Niño , Femenino , Ontología de Genes , Genes Esenciales , Humanos , Malaria Vivax/genética , Masculino , MicroARNs/sangre , MicroARNs/genética , MicroARNs/metabolismo , Mapas de Interacción de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Curva ROC , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Regulación hacia Arriba/genética , Adulto Joven
13.
Trop Med Int Health ; 22(12): 1590-1598, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29029367

RESUMEN

OBJECTIVE: To elucidate the genetic diversity of Plasmodium falciparum in residual transmission foci of northern India. METHODS: Clinically suspected patients with malaria were screened for malaria infection by microscopy. 48 P. falciparum-infected patients were enrolled from tertiary care hospital in Chandigarh, India. Blood samples were collected from enrolled patients, genomic DNA extraction and nested PCR was performed for further species confirmation. Sanger sequencing was carried out using block 2 region of msp1, R2 region of glurp and pfs25-specific primers. RESULTS: Extensive diversity was found in msp1 alleles with predominantly RO33 alleles. Overall allelic prevalence was 55.8% for RO33, 39.5% for MAD20 and 4.7% for K1. Six variants were observed in MAD20, whereas no variant was found in RO33 and K1 alleles. A phylogenetic analysis of RO33 alleles indicated more similarity to South African isolates, whereas MAD20 alleles showed similarity with South-East Asian isolates. In glurp, extensive variation was observed with eleven different alleles based on the AAU repeats. However, pfs25 showed less diversity and was the most stable among the targeted genes. CONCLUSION: Our findings document the genetic diversity among circulating strains of P. falciparum in an area of India with low malaria transmission and could have implications for control strategies to reach the national goal of malaria elimination.


Asunto(s)
Genes Protozoarios , Malaria Falciparum/parasitología , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas Protozoarias/genética , Adolescente , Adulto , Alelos , Antígenos de Protozoos/genética , Niño , ADN Protozoario/análisis , Frecuencia de los Genes , Genotipo , Ácido Glutámico , Humanos , India , Filogenia , Plasmodium falciparum/aislamiento & purificación , Adulto Joven
14.
J Transl Med ; 12: 300, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25424736

RESUMEN

BACKGROUND: Human Papilloma Virus (HPV) infection is the major cause of cervical cancer worldwide. With limited data available on HPV prevalence in the Arab countries, this study aimed to identify the prevalence and genotypic distribution of HPV in the State of Qatar. METHODS: 3008 cervical samples, exclusively of women with Arabic origin residing in Qatar were collected from the Women's Hospital and Primary Health Care Corporation in Doha, State of Qatar. HPV DNA detection was done using GP5+/6+ primers based real time-polymerase chain reaction (RT-PCR) assay followed by the usage of HPV type specific primers based RT- PCR reactions and Sanger sequencing for genotype identification. RESULTS: Similar prevalence rates of HPV infection was identified in both Qatari and non-Qatari women at 6.2% and 5.9% respectively. HPV prevalence rate of 5.8% and 18.4% was identified in women with normal cytology and in women with abnormal cytology respectively. HPV 81, 11 and 16, in decreasing order were the most commonly identified genotypes. HPV 81 was the most frequent low-risk genotype among women with both normal (74.0%) and abnormal (33.3%) cytology. HPV 16 (4.6%) was identified as the predominant high-risk HPV genotype among women with normal cytology and HPV 16, HPV 18, and HPV 56 (22.2% each) were the most common identified high-risk genotypes in women with abnormal cytology. CONCLUSIONS: The overall HPV prevalence in Arab women in Qatar was identified as 6.1% with an increased HPV prevalence seen in women with abnormal cytology results and no significant trends seen with age. In contrast to Western countries, we report a varied genotypic profile of HPV with a high prevalence of low-risk HPV genotype 81 among the Arab women residing in Qatar.


Asunto(s)
Árabes , Papillomaviridae/genética , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/virología , Adolescente , Adulto , Distribución por Edad , ADN Viral/genética , Demografía , Femenino , Genotipo , Humanos , Persona de Mediana Edad , Epidemiología Molecular , Oportunidad Relativa , Prevalencia , Qatar/epidemiología , Adulto Joven
15.
Pathogens ; 13(2)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38392861

RESUMEN

Babesia microti (B. microti) is a tick-transmitted protozoan parasite that invades red blood cells. It is the primary cause of human babesiosis in the US. The severity of babesiosis caused by B. microti infection can range from asymptomatic to fatal. Risk factors for severe disease include general immune suppression, advanced age (>50) and lack of a spleen. However, severe disease can occur in the absence of any known risk factors. The degree to which tick-transmitted B. microti infection confers protection from subsequent exposure is largely unexplored. This is an important question as both the prevalence and geographic range of tick-transmitted B. microti infection continues to increase and individuals in endemic regions may have multiple exposures over their lifetime. In the current study we used a mouse model to evaluate the degree to which primary infection with B. microti protected against secondary challenge with the same parasite strain. We show that CD4 T cells, and to a lesser extent B cells, contribute to protection. However, mice exhibited significant protection from secondary parasite challenge even in the absence of either CD4 T cells or B cells. The protection mediated by CD4 T cells did not depend on their production of IFN-γ as mice with a targeted gene deletion for the IFN-γ receptor remained fully protected against secondary challenge. Other factors including inducible nitric oxide synthase (iNOS) and the adaptor protein MyD88, important for toll-like receptors, IL-18 and IL-1 signaling, were not important for protection against primary or secondary challenge with B. microti. Thus, our study shows that resolution of primary infection with B. microti results in robust protection against secondary challenge with parasites, at least in the short term. Further studies are needed to evaluate the length of protection and the degree to which protection is impacted by parasite heterogeneity. Although we show an important role for CD4 T cells in protection against secondary challenge, our results suggest that no single aspect of the immune system is solely responsible for adequate protection against secondary challenge with B. microti.

16.
One Health ; 18: 100708, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38496338

RESUMEN

Rodents are known reservoirs for a diverse group of zoonotic pathogens that can pose a threat to human health. Therefore, it is crucial to investigate these pathogens to institute prevention and control measures. To achieve this, the current study was conducted to investigate the frequency of different parasites in commensal rodents in Qatar. A total of 148 rodents, including Rattus norvegicus, Rattus rattus, and Mus musculus were captured using traps placed in different habitats such as agricultural and livestock farms, residential areas, and other localities. Blood, feces, ectoparasite, and visceral organs were collected for gross, microscopic, immunological, and molecular analysis. The study identified 10 different parasites, including Capillaria annulosa, Eimeria spp., Giardia spp., Hymenolepis diminuta, Mastophorus muris, Ornithonyssus bacoti, Taenia taeniaeformis, Toxoplasma gondii, Trypanosoma lewisi, and Xenopsylla astia. Overall, 62.2% of the rodents tested positive for at least one parasite species. Helminths were found to be the most prevalent parasites (46.0%), followed by ectoparasites (31.8%), and protozoa (10.1%). However, individually, X. astia was the most prevalent (31.8%), whereas C. annulosa was the least common (0.7%). The prevalence of X. astia and H. diminuta significantly differed between habitats (p < 0.05). The sequence analysis of Hymenolepis spp. was closely related to the previously reported H. diminuta in Iran, China, and Mexico. In conclusion, the study identified a diverse range of rodent-borne parasites that are important to public health, with most of them being recorded for the first time among commensal rodents in Qatar.

17.
Microbiol Spectr ; : e0346222, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847511

RESUMEN

This is the first detailed characterization of the microbiota and chemistry of different arid habitats from the State of Qatar. Analysis of bacterial 16S rRNA gene sequences showed that in aggregate, the dominant microbial phyla were Actinobacteria (32.3%), Proteobacteria (24.8%), Firmicutes (20.7%), Bacteroidetes (6.3%), and Chloroflexi (3.6%), though individual soils varied widely in the relative abundances of these and other phyla. Alpha diversity measured using feature richness (operational taxonomic units [OTUs]), Shannon's entropy, and Faith's phylogenetic diversity (PD) varied significantly between habitats (P = 0.016, P = 0.016, and P = 0.015, respectively). Sand, clay, and silt were significantly correlated with microbial diversity. Highly significant negative correlations were also seen at the class level between both classes Actinobacteria and Thermoleophilia (phylum Actinobacteria) and total sodium (R = -0.82 and P = 0.001 and R = -0.86, P = 0.000, respectively) and slowly available sodium (R = -0.81 and P = 0.001 and R = -0.8 and P = 0.002, respectively). Additionally, class Actinobacteria also showed significant negative correlation with sodium/calcium ratio (R = -0.81 and P = 0.001). More work is needed to understand if there is a causal relationship between these soil chemical parameters and the relative abundances of these bacteria. IMPORTANCE Soil microbes perform a multitude of essential biological functions, including organic matter decomposition, nutrient cycling, and soil structure preservation. Qatar is one of the most hostile and fragile arid environments on earth and is expected to face a disproportionate impact of climate change in the coming years. Thus, it is critical to establish a baseline understanding of microbial community composition and to assess how soil edaphic factors correlate with microbial community composition in this region. Although some previous studies have quantified culturable microbes in specific Qatari habitats, this approach has serious limitations, as in environmental samples, approximately only 0.5% of cells are culturable. Hence, this method vastly underestimates natural diversity within these habitats. Our study is the first to systematically characterize the chemistry and total microbiota associated with different habitats present in the State of Qatar.

18.
Antibiotics (Basel) ; 11(2)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35203733

RESUMEN

Ceftazidime-avibactam and ceftolozane-tazobactam are approved for the treatment of complicated Gram-negative bacterial infections including multidrug-resistant (MDR) Pseudomonas aeruginosa. Resistance to both agents has been reported, but the underlying mechanisms have not been fully explored. This study aimed to correlate ß-lactamases with phenotypic resistance to ceftazidime-avibactam and/or ceftolozane-tazobactam in MDR-P. aeruginosa from Qatar. A total of 525 MDR-P. aeruginosa isolates were collected from clinical specimens between 2014 and 2017. Identification and antimicrobial susceptibility were performed by the BD PhoenixTM system and gradient MIC test strips. Of the 75 sequenced MDR isolates, 35 (47%) were considered as having difficult-to-treat resistance, and 42 were resistant to ceftazidime-avibactam (37, 49.3%), and/or ceftolozane-tazobactam (40, 53.3%). They belonged to 12 sequence types, with ST235 being predominant (38%). Most isolates (97.6%) carried one or more ß-lactamase genes, with blaOXA-488 (19%) and blaVEB-9 (45.2%) being predominant. A strong association was detected between class B ß-lactamase genes and both ceftazidime-avibactam and ceftolozane-tazobactam resistance, while class A genes were associated with ceftolozane-tazobactam resistance. Co-resistance to ceftazidime-avibactam and ceftolozane-tazobactam correlated with the presence of blaVEB-9, blaPDC-35, blaVIM-2, blaOXA-10 and blaOXA-488. MDR-P. aeruginosa isolates resistant to both combination drugs were associated with class B ß-lactamases (blaVIM-2) and class D ß-lactamases (blaOXA-10), while ceftolozane-tazobactam resistance was associated with class A (blaVEB-9), class C (blaVPDC-35), and class D ß-lactamases (blaOXA-488).

19.
Front Public Health ; 10: 970694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726636

RESUMEN

Qatar is a peninsular country with predominantly hot and humid weather, with 88% of the total population being immigrants. As such, it leaves the country liable to the introduction and dissemination of vector-borne diseases, in part due to the presence of native arthropod vectors. Qatar's weather is expected to become warmer with the changing climatic conditions across the globe. Environmental factors such as humidity and temperature contribute to the breeding and distribution of different types of mosquito species in a given region. If proper and timely precautions are not taken, a high rate of particular mosquito species can result in the transmission of various vector-borne diseases. In this study, we analyzed the environmental impact on the probability of occurrence of different mosquito species collected from several different sites in Qatar. The Naive Bayes model was used to calculate the posterior probability for various mosquito species. Further, the resulting Naive Bayes predictions were used to define the favorable environmental circumstances for identified mosquito species. The findings of this study will help in the planning and implementation of an active surveillance system and preventive measures to curb the spread of mosquitoes in Qatar.


Asunto(s)
Culicidae , Enfermedades Transmitidas por Vectores , Animales , Mosquitos Vectores , Teorema de Bayes , Qatar , Tiempo (Meteorología)
20.
Artículo en Inglés | MEDLINE | ID: mdl-36483382

RESUMEN

Objectives: Antimicrobial resistance (AMR) is a global priority with significant clinical and economic consequences. Multidrug-resistant (MDR) Pseudomonas aeruginosa is one of the major pathogens associated with significant morbidity and mortality. In healthcare settings, the evaluation of prevalence, microbiological characteristics, as well as mechanisms of resistance is of paramount importance to overcome associated challenges. Methods: Consecutive clinical specimens of P. aeruginosa were collected prospectively from 5 acute-care and specialized hospitals between October 2014 and September 2017, including microbiological, clinical characteristics and outcomes. Identification and antimicrobial susceptibility test were performed using the BD Phoenix identification and susceptibility testing system, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), and minimum inhibitory concentration (MIC) test strips. Overall, 78 selected MDR P. aeruginosa isolates were processed for whole-genome sequencing (WGS). Results: The overall prevalence of MDR P. aeruginosa isolates was 5.9% (525 of 8,892) and showed a decreasing trend; 95% of cases were hospital acquired and 44.8% were from respiratory samples. MDR P. aeruginosa demonstrated >86% resistance to cefepime, ciprofloxacin, meropenem, and piperacillin-tazobactam but 97.5% susceptibility to colistin. WGS revealed 29 different sequence types: 20.5% ST235, 10.3% ST357, 7.7% ST389, and 7.7% ST1284. ST233 was associated with bloodstream infections and increased 30-day mortality. All ST389 isolates were obtained from patients with cystic fibrosis. Encoded exotoxin genes were detected in 96.2% of isolates. Conclusions: MDR P. aeruginosa isolated from clinical specimens from Qatar has significant resistance to most agents, with a decreasing trend that should be explored further. Genomic analysis revealed the dominance of 5 main clonal clusters associated with mortality and bloodstream infections. Microbiological and genomic monitoring of MDR P. aeruginosa has enhanced our understanding of AMR in Qatar.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA