Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioessays ; 44(11): e2200104, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36101513

RESUMEN

Many viruses evolved mechanisms for capping the 5'-ends of their plus-strand RNAs as a means of hijacking the eukaryotic messenger RNA (mRNA) splicing/translation machinery. Although capping is critical for replication, the RNAs of these viruses have other essential functions including their requirement to be packaged as either genomes or pre-genomes into progeny viruses. Recent studies indicate that human immunodeficiency virus type-1 (HIV-1) RNAs are segregated between splicing/translation and packaging functions by a mechanism that involves structural sequestration of the 5'-cap. Here, we examined studies reported for other viruses and retrotransposons that require both selective packaging of their RNAs and 5'-RNA capping for host-mediated translation. Our findings suggest that viruses and retrotransposons have evolved multiple mechanisms to control 5'-cap accessibility, consistent with the hypothesis that removal or sequestration of the 5' cap enables packageable RNAs to avoid capture by the cellular RNA processing and translation machinery.


Asunto(s)
ARN Viral , Retroelementos , Humanos , ARN Viral/genética , ARN Viral/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Procesamiento Postranscripcional del ARN , Empalme del ARN/genética
2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493679

RESUMEN

HIV-1 selectively packages two copies of its 5'-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5' leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5' leader. ΨCES lacks a 5'-tandem hairpin element that sequesters the 5' cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5' ribozyme to ΨCES to enable cotranscriptional shedding of the 5' cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5' cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5'-capped RNA genomes.


Asunto(s)
Regiones no Traducidas 5'/genética , Genoma Viral , VIH-1/genética , Caperuzas de ARN/metabolismo , ARN Viral/metabolismo , Virión/fisiología , Ensamble de Virus , Células HEK293 , Infecciones por VIH/virología , Humanos , Conformación de Ácido Nucleico , Caperuzas de ARN/química , Caperuzas de ARN/genética , ARN Viral/química , ARN Viral/genética
3.
Proc Natl Acad Sci U S A ; 117(30): 17737-17746, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32647061

RESUMEN

Selective packaging of the HIV-1 genome during virus assembly is mediated by interactions between the dimeric 5'-leader of the unspliced viral RNA and the nucleocapsid (NC) domains of a small number of assembling viral Gag polyproteins. Here, we show that the dimeric 5'-leader contains more than two dozen NC binding sites with affinities ranging from 40 nM to 1.4 µM, and that all high-affinity sites (Kd ≲ 400 nM) reside within a ∼150-nt region of the leader sufficient to promote RNA packaging (core encapsidation signal, ΨCES). The four initial binding sites with highest affinity reside near two symmetrically equivalent three-way junction structures. Unlike the other high-affinity sites, which bind NC with exothermic energetics, binding to these sites occurs endothermically due to concomitant unwinding of a weakly base-paired [UUUU]:[GGAG] helical element. Mutations that stabilize base pairing within this element eliminate NC binding to this site and severely impair RNA packaging into virus-like particles. NMR studies reveal that a recently discovered small-molecule inhibitor of HIV-1 RNA packaging that appears to function by stabilizing the structure of the leader binds directly to the [UUUU]:[GGAG] helix. Our findings suggest a sequential NC binding mechanism for Gag-genome assembly and identify a potential RNA Achilles' heel to which HIV therapeutics may be targeted.


Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , Nucleocápside/metabolismo , ARN Viral , Secuencias Reguladoras de Ácido Ribonucleico , Ensamble de Virus , Secuencia de Bases , Sitios de Unión , Genoma Viral , Conformación de Ácido Nucleico , Proteínas de la Nucleocápside/metabolismo , Unión Proteica
4.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31801870

RESUMEN

The assembly of an orthoretrovirus such as HIV-1 requires the coordinated functioning of multiple biochemical activities of the viral Gag protein. These activities include membrane targeting, lattice formation, packaging of the RNA genome, and recruitment of cellular cofactors that modulate assembly. In most previous studies, these Gag activities have been investigated individually, which provided somewhat limited insight into how they functionally integrate during the assembly process. Here, we report the development of a biochemical reconstitution system that allowed us to investigate how Gag lattice formation, RNA binding, and the assembly cofactor inositol hexakisphosphate (IP6) synergize to generate immature virus particles in vitro The results identify an important rate-limiting step in assembly and reveal new insights into how RNA and IP6 promote immature Gag lattice formation. The immature virus-like particles can be converted into mature capsid-like particles by the simple addition of viral protease, suggesting that it is possible in principle to fully biochemically reconstitute the sequential processes of HIV-1 assembly and maturation from purified components.IMPORTANCE Assembly and maturation are essential steps in the replication of orthoretroviruses such as HIV-1 and are proven therapeutic targets. These processes require the coordinated functioning of the viral Gag protein's multiple biochemical activities. We describe here the development of an experimental system that allows an integrative analysis of how Gag's multiple functionalities cooperate to generate a retrovirus particle. Our current studies help to illuminate how Gag synergizes the formation of the virus compartment with RNA binding and how these activities are modulated by the small molecule IP6. Further development and use of this system should lead to a more comprehensive understanding of the molecular mechanisms of HIV-1 assembly and maturation and may provide new insights for the development of antiretroviral drugs.


Asunto(s)
VIH-1/genética , VIH-1/fisiología , Ensamble de Virus/genética , Ensamble de Virus/fisiología , Cápside/metabolismo , Humanos , Microscopía Electrónica , Modelos Moleculares , Ácido Fítico , Virión/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
5.
J Am Chem Soc ; 141(4): 1430-1434, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30652860

RESUMEN

NMR has provided a wealth of structural and dynamical information for RNA molecules of up to ∼50 nucleotides, but its application to larger RNAs has been hampered in part by difficulties establishing global structural features. A potential solution involves measurement of NMR perturbations after site-specific paramagnetic labeling. Although the approach works well for proteins, the inability to place the label at specific sites has prevented its application to larger RNAs transcribed in vitro. Here, we present a strategy in which RNA loop residues are modified to promote binding to a paramagnetically tagged reporter protein. Lanthanide-induced pseudocontact shifts are demonstrated for a 232-nucleotide RNA bound to tagged derivatives of the spliceosomal U1A RNA-binding domain. Further, the method is validated with a 36-nucleotide RNA for which measured NMR values agreed with predictions based on the previously known protein and RNA structures. The ability to readily insert U1A binding sites into ubiquitous hairpin and/or loop structures should make this approach broadly applicable for the atomic-level study of large RNAs.


Asunto(s)
Fenómenos Magnéticos , ARN/química , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Secuencia de Bases , Modelos Moleculares , Conformación de Ácido Nucleico , ARN/genética , ARN/metabolismo
6.
J Biomol NMR ; 73(10-11): 525-529, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31325088

RESUMEN

NMR assignment typically involves analysis of peaks across multiple NMR spectra. Chemical shifts of peaks are measured before being assigned to atoms using a variety of methods. These approaches quickly become complicated by overlap, ambiguity, and the complexity of correlating assignments among multiple spectra. Here we propose an alternative approach in which a network of linked peak-boxes is generated at the predicted positions of peaks across all spectra. These peak-boxes correlate known relationships and can be matched to the observed spectra. The method is illustrated with RNA, but a variety of molecular types should be readily tractable with this approach.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , ARN/química , Programas Informáticos , Modelos Moleculares , Compuestos Orgánicos/química , Péptidos/química
7.
Bioorg Med Chem ; 27(13): 2883-2892, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31126822

RESUMEN

Anti-HIV-1 drug design has been notably challenging due to the virus' ability to mutate and develop immunity against commercially available drugs. The aims of this project were to develop a series of fleximer base analogues that not only possess inherent flexibility that can remain active when faced with binding site mutations, but also target a non-canonical, highly conserved target: the nucleocapsid protein of HIV (NC). The compounds were predicted by computational studies not to function via zinc ejection, which would endow them with significant advantages over non-specific and thus toxic zinc-ejectors. The target fleximer bases were synthesized using palladium-catalyzed cross-coupling techniques and subsequently tested against NC and HIV-1. The results of those studies are described herein.


Asunto(s)
Fármacos Anti-VIH/química , Fármacos Anti-VIH/síntesis química , VIH-1/genética , Proteínas de la Nucleocápside/genética , Humanos , Estructura Molecular
8.
Proc Natl Acad Sci U S A ; 113(46): 13033-13038, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27791166

RESUMEN

HIV type-1 (HIV-1) contains a pseudodiploid RNA genome that is selected for packaging and maintained in virions as a noncovalently linked dimer. Genome dimerization is mediated by conserved elements within the 5'-leader of the RNA, including a palindromic dimer initiation signal (DIS) that has been proposed to form kissing hairpin and/or extended duplex intermolecular contacts. Here, we have applied a 2H-edited NMR approach to directly probe for intermolecular interactions in the full-length, dimeric HIV-1 5'-leader (688 nucleotides; 230 kDa). The interface is extensive and includes DIS:DIS base pairing in an extended duplex state as well as intermolecular pairing between elements of the upstream Unique-5' (U5) sequence and those near the gag start site (AUG). Other pseudopalindromic regions of the leader, including the transcription activation (TAR), polyadenylation (PolyA), and primer binding (PBS) elements, do not participate in intermolecular base pairing. Using a 2H-edited one-dimensional NMR approach, we also show that the extended interface structure forms on a time scale similar to that of overall RNA dimerization. Our studies indicate that a kissing dimer-mediated structure, if formed, exists only transiently and readily converts to the extended interface structure, even in the absence of the HIV-1 nucleocapsid protein or other RNA chaperones.


Asunto(s)
Regiones no Traducidas 5' , VIH-1/genética , ARN Viral/química , Dimerización , Genoma Viral , Espectroscopía de Resonancia Magnética
9.
Proc Natl Acad Sci U S A ; 113(47): 13378-13383, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27834211

RESUMEN

The promoter in HIV type 1 (HIV-1) proviral DNA contains three sequential guanosines at the U3-R boundary that have been proposed to function as sites for transcription initiation. Here we show that all three sites are used in cells infected with HIV-1 and that viral RNAs containing a single 5' capped guanosine (Cap1G) are specifically selected for packaging in virions, consistent with a recent report [Masuda et al. (2015) Sci Rep 5:17680]. In addition, we now show that transcripts that begin with two or three capped guanosines (Cap2G or Cap3G) are enriched on polysomes, indicating that RNAs synthesized from different transcription start sites have different functions in viral replication. Because genomes are selected for packaging as dimers, we examined the in vitro monomer-dimer equilibrium properties of Cap1G, Cap2G, and Cap3G 5'-leader RNAs in the NL4-3 strain of HIV-1. Strikingly, under physiological-like ionic conditions in which the Cap1G 5'-leader RNA adopts a dimeric structure, the Cap2G and Cap3G 5'-leader RNAs exist predominantly as monomers. Mutagenesis studies designed to probe for base-pairing interactions suggest that the additional guanosines of the 2G and 3G RNAs remodel the base of the PolyA hairpin, resulting in enhanced sequestration of dimer-promoting residues and stabilization of the monomer. Our studies suggest a mechanism through which the structure, function, and fate of the viral genome can be modulated by the transcriptionally controlled presence or absence of a single 5' guanosine.


Asunto(s)
Guanosina/genética , VIH-1/genética , ARN Viral/química , Sitio de Iniciación de la Transcripción , Heterogeneidad Genética , Genoma Viral , VIH-1/fisiología , Estructura Molecular , Mutación , Polirribosomas/genética , Regiones Promotoras Genéticas , ARN Viral/genética , Transcripción Genética , Ensamble de Virus , Replicación Viral
10.
J Am Chem Soc ; 140(22): 6978-6983, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29757635

RESUMEN

NMR approaches using nucleotide-specific deuterium labeling schemes have enabled structural studies of biologically relevant RNAs of increasing size and complexity. Although local structure is well-determined using these methods, definition of global structural features, including relative orientations of independent helices, remains a challenge. Residual dipolar couplings, a potential source of orientation information, have not been obtainable for large RNAs due to poor sensitivity resulting from rapid heteronuclear signal decay. Here we report a novel multiple quantum NMR method for RDC determination that employs flip angle variation rather than a coupling evolution period. The accuracy of the method and its utility for establishing interhelical orientations are demonstrated for a 36-nucleotide RNA, for which comparative data could be obtained. Applied to a 78 kDa Rev response element from the HIV-1 virus, which has an effective rotational correlation time of ca. 160 ns, the method yields sensitivity gains of an order of magnitude or greater over existing approaches. Solution-state access to structural organization in RNAs of at least 230 nucleotides is now possible.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , ARN/química , Conformación de Ácido Nucleico , ARN/genética
11.
Retrovirology ; 12: 83, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26420212

RESUMEN

BACKGROUND: Retroviruses selectively package two copies of their unspliced genomes by what appears to be a dimerization-dependent RNA packaging mechanism. Dimerization of human immunodeficiency virus Type-1 (HIV-1) genomes is initiated by "kissing" interactions between GC-rich palindromic loop residues of a conserved hairpin (DIS), and is indirectly promoted by long-range base pairing between residues overlapping the gag start codon (AUG) and an upstream Unique 5' element (U5). The DIS and U5:AUG structures are phylogenetically conserved among divergent retroviruses, suggesting conserved functions. However, some studies suggest that the DIS of HIV-2 does not participate in dimerization, and that U5:AUG pairing inhibits, rather than promotes, genome dimerization. We prepared RNAs corresponding to native and mutant forms of the 5' leaders of HIV-1 (NL4-3 strain), HIV-2 (ROD strain), and two divergent strains of simian immunodeficiency virus (SIV; cpz-TAN1 and -US strains), and probed for potential roles of the DIS and U5:AUG base pairing on intrinsic and NC-dependent dimerization by mutagenesis, gel electrophoresis, and NMR spectroscopy. RESULTS: Dimeric forms of the native HIV-2 and SIV leaders were only detectable using running buffers that contained Mg(2+), indicating that these dimers are more labile than that of the HIV-1 leader. Mutations designed to promote U5:AUG base pairing promoted dimerization of the HIV-2 and SIV RNAs, whereas mutations that prevented U5:AUG pairing inhibited dimerization. Chimeric HIV-2 and SIV leader RNAs containing the dimer-promoting loop of HIV-1 (DIS) exhibited HIV-1 leader-like dimerization properties, whereas an HIV-1NL4-3 mutant containing the SIVcpzTAN1 DIS loop behaved like the SIVcpzTAN1 leader. The cognate NC proteins exhibited varying abilities to promote dimerization of the retroviral leader RNAs, but none were able to convert labile dimers to non-labile dimers. CONCLUSIONS: The finding that U5:AUG formation promotes dimerization of the full-length HIV-1, HIV-2, SIVcpzUS, and SIVcpzTAN1 5' leaders suggests that these retroviruses utilize a common RNA structural switch mechanism to modulate function. Differences in native and NC-dependent dimerization propensity and lability are due to variations in the compositions of the DIS loop residues rather than other sequences within the leader RNAs. Although NC is a well-known RNA chaperone, its role in dimerization has the hallmarks of a classical riboswitch.


Asunto(s)
Genoma Viral , VIH-1/genética , Regiones no Traducidas 5' , Animales , Emparejamiento Base , Secuencia de Bases , Dimerización , VIH-2/genética , Humanos , Mutagénesis , Mutación , Conformación de Ácido Nucleico , Nucleocápside/genética , ARN Viral/genética , Virus de la Inmunodeficiencia de los Simios/genética
12.
J Biomol NMR ; 63(1): 39-52, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26141454

RESUMEN

The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR and (13)C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and (1)H and (13)C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA (1)H and (13)C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.


Asunto(s)
Carbono/química , Minería de Datos , Bases de Datos como Asunto , Hidrógeno/química , ARN/química , Máquina de Vectores de Soporte , Automatización , Calibración , Almacenamiento y Recuperación de la Información , Nucleótidos/química , Análisis de Regresión
13.
Chembiochem ; 15(11): 1573-7, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24954297

RESUMEN

Isotope labeling has revolutionized NMR studies of small nucleic acids, but to extend this technology to larger RNAs, site-specific labeling tools to expedite NMR structural and dynamics studies are required. Using enzymes from the pentose phosphate pathway, we coupled chemically synthesized uracil nucleobase with specifically (13) C-labeled ribose to synthesize both UTP and CTP in nearly quantitative yields. This chemoenzymatic method affords a cost-effective preparation of labels that are unattainable by current methods. The methodology generates versatile (13) C and (15) N labeling patterns which, when employed with relaxation-optimized NMR spectroscopy, effectively mitigate problems of rapid relaxation that result in low resolution and sensitivity. The methodology is demonstrated with RNAs of various sizes, complexity, and function: the exon splicing silencer 3 (27 nt), iron responsive element (29 nt), Pro-tRNA (76 nt), and HIV-1 core encapsidation signal (155 nt).


Asunto(s)
Simulación de Dinámica Molecular , Nucleótidos de Pirimidina/biosíntesis , ARN/química , Resonancia Magnética Nuclear Biomolecular , Nucleótidos de Pirimidina/química , ARN/metabolismo , Estereoisomerismo
14.
J Virol ; 87(6): 3561-70, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23325685

RESUMEN

Incorporation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins into assembling particles is crucial for virion infectivity. Genetic and biochemical data indicate that the matrix (MA) domain of Gag and the cytoplasmic tail of the transmembrane glycoprotein gp41 play an important role in coordinating Env incorporation; however, the molecular mechanism and possible role of host factors in this process remain to be defined. Recent studies suggested that Env incorporation is mediated by interactions between matrix and tail-interacting protein of 47 kDa (TIP47; also known as perilipin-3 and mannose-6-phosphate receptor-binding protein 1), a member of the perilipin, adipophilin, TIP47 (PAT) family of proteins implicated in protein sorting and lipid droplet biogenesis. We have confirmed by nuclear magnetic resonance spectroscopy titration experiments and surface plasmon resonance that MA binds TIP47. We also reevaluated the role of TIP47 in HIV-1 Env incorporation in HeLa cells and in the Jurkat T-cell line. In HeLa cells, TIP47 overexpression or RNA interference (RNAi)-mediated depletion had no significant effect on HIV-1 Env incorporation, virus release, or particle infectivity. Similarly, depletion of TIP47 in Jurkat cells did not impair HIV-1 Env incorporation, virus release, infectivity, or replication. Our results thus do not support a role for TIP47 in HIV-1 Env incorporation or virion infectivity.


Asunto(s)
VIH-1/fisiología , Interacciones Huésped-Patógeno , Proteínas de Transporte Vesicular/metabolismo , Ensamble de Virus , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Células HeLa , Humanos , Células Jurkat , Espectroscopía de Resonancia Magnética , Perilipina-3 , Resonancia por Plasmón de Superficie
15.
Retrovirology ; 10: 136, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24237936

RESUMEN

BACKGROUND: Previously, we reported the conversion of the 12-mer linear and cell-impermeable peptide CAI to a cell-penetrating peptide NYAD-1 by using an i,i + 4 hydrocarbon stapling technique and confirmed its binding to the C-terminal domain (CTD) of the HIV-1 capsid (CA) protein with an improved affinity (K(d) ~ 1 µM) compared to CAI (K(d) ~ 15 µM). NYAD-1 disrupts the formation of both immature- and mature-like virus particles in in vitro and cell-based assembly assays. In addition, it displays potent anti-HIV-1 activity in cell culture against a range of laboratory-adapted and primary HIV-1 isolates. RESULTS: In this report, we expanded the study to i,i + 7 hydrocarbon-stapled peptides to delineate their mechanism of action and antiviral activity. We identified three potent inhibitors, NYAD-36, -66 and -67, which showed strong binding to CA in NMR and isothermal titration calorimetry (ITC) studies and disrupted the formation of mature-like particles. They showed typical α-helical structures and penetrated cells; however, the cell penetration was not as efficient as observed with the i,i + 4 peptides. Unlike NYAD-1, the i,i + 7 peptides did not have any effect on virus release; however, they impaired Gag precursor processing. HIV-1 particles produced in the presence of these peptides displayed impaired infectivity. Consistent with an effect on virus entry, selection for viral resistance led to the emergence of two mutations in the gp120 subunit of the viral envelope (Env) glycoprotein, V120Q and A327P, located in the conserved region 1 (C1) and the base of the V3 loop, respectively. CONCLUSION: The i,i + 7 stapled peptides derived from CAI unexpectedly target both CA and the V3 loop of gp120. This dual-targeted activity is dependent on their ability to penetrate cells as well as their net charge. This mechanistic revelation will be useful in further modifying these peptides as potent anti-HIV-1 agents.


Asunto(s)
Fármacos Anti-VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/fisiología , Péptidos/farmacología , Ensamble de Virus/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Fármacos Anti-VIH/metabolismo , Línea Celular , Proteína p24 del Núcleo del VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Humanos , Péptidos/metabolismo , Unión Proteica
16.
J Biomol NMR ; 55(1): 33-46, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23180050

RESUMEN

The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson-Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 4(3) possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA (1)H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Protones , ARN/química , Emparejamiento Base , Bases de Datos Factuales , Conformación de Ácido Nucleico
17.
J Clin Invest ; 133(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36602866

RESUMEN

BackgroundAntiretroviral therapy (ART) halts HIV-1 replication, decreasing viremia to below the detection limit of clinical assays. However, some individuals experience persistent nonsuppressible viremia (NSV) originating from CD4+ T cell clones carrying infectious proviruses. Defective proviruses represent over 90% of all proviruses persisting during ART and can express viral genes, but whether they can cause NSV and complicate ART management is unknown.MethodsWe undertook an in-depth characterization of proviruses causing NSV in 4 study participants with optimal adherence and no drug resistance. We investigated the impact of the observed defects on 5'-leader RNA properties, virus infectivity, and gene expression. Integration-site specific assays were used to track these proviruses over time and among cell subsets.ResultsClones carrying proviruses with 5'-leader defects can cause persistent NSV up to approximately 103 copies/mL. These proviruses had small, often identical deletions or point mutations involving the major splicing donor (MSD) site and showed partially reduced RNA dimerization and nucleocapsid binding. Nevertheless, they were inducible and produced noninfectious virions containing viral RNA, but lacking envelope.ConclusionThese findings show that proviruses with 5'-leader defects in CD4+ T cell clones can give rise to NSV, affecting clinical care. Sequencing of the 5'-leader can help in understanding failure to completely suppress viremia.FundingOffice of the NIH Director and National Institute of Dental and Craniofacial Research, NIH; Howard Hughes Medical Institute; Johns Hopkins University Center for AIDS Research; National Institute for Allergy and Infectious Diseases (NIAID), NIH, to the PAVE, BEAT-HIV, and DARE Martin Delaney collaboratories.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Provirus/genética , Provirus/metabolismo , VIH-1/genética , VIH-1/metabolismo , Viremia/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Linfocitos T CD4-Positivos , ARN Viral/genética , ARN Viral/metabolismo
19.
Cell Host Microbe ; 29(9): 1421-1436.e7, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34384537

RESUMEN

The HIV-1 virion structural polyprotein, Gag, is directed to particle assembly sites at the plasma membrane by its N-terminal matrix (MA) domain. MA also binds to host tRNAs. To understand the molecular basis of MA-tRNA interaction and its potential function, we present a co-crystal structure of HIV-1 MA-tRNALys3 complex. The structure reveals a specialized group of MA basic and aromatic residues preconfigured to recognize the distinctive structure of the tRNA elbow. Mutational, cross-linking, fluorescence, and NMR analyses show that the crystallographically defined interface drives MA-tRNA binding in solution and living cells. The structure indicates that MA is unlikely to bind tRNA and membrane simultaneously. Accordingly, single-amino-acid substitutions that abolish MA-tRNA binding caused striking redistribution of Gag to the plasma membrane and reduced HIV-1 replication. Thus, HIV-1 exploits host tRNAs to occlude a membrane localization signal and control the subcellular distribution of its major structural protein.


Asunto(s)
Antígenos VIH/metabolismo , Dominios Proteicos/fisiología , ARN de Transferencia/metabolismo , Ensamble de Virus/fisiología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Células HEK293 , VIH-1/genética , Células HeLa , Humanos , ARN de Transferencia/genética , Proteínas de Unión al ARN/metabolismo
20.
J Biomol NMR ; 46(1): 113-25, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19789981

RESUMEN

The known biological functions of RNA have expanded in recent years and now include gene regulation, maintenance of sub-cellular structure, and catalysis, in addition to propagation of genetic information. As for proteins, RNA function is tightly correlated with structure. Unlike proteins, structural information for larger, biologically functional RNAs is relatively limited. NMR signal degeneracy, relaxation problems, and a paucity of long-range (1)H-(1)H dipolar contacts have limited the utility of traditional NMR approaches. Selective isotope labeling, including nucleotide-specific and segmental labeling strategies, may provide the best opportunities for obtaining structural information by NMR. Here we review methods that have been developed for preparing and purifying isotopically labeled RNAs, as well as NMR strategies that have been employed for signal assignment and structure determination.


Asunto(s)
Marcaje Isotópico/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , ARN/química , Conformación de Ácido Nucleico , ARN/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA