Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 237(Pt 2): 117065, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37660872

RESUMEN

Dissolved organic carbon (DOC) is an important function of soil organic carbon and sensitive to environmental disturbance. Few studies have explored the variations in soil DOC dynamics and effects on soil physicochemical properties following prescribed burnings. In this study, Pinus koraiensis plantation forests in Northeast China were selected and subjected to prescribed burning in early November 2018. Soil DOC and different soil physicochemical and biological properties in the 0-10 cm and 10-20 cm soil layers were sampled six times within two years after a prescribed burning. In this study, some soil physicochemical (SOC, TN, and ST) and microbial biomass properties (MBC) recovered within two years after a prescribed burning. Compared to the unburned control stands, the post-fire soil DOC concentrations in the upper and lower soil layers increased by 16% and 12%, respectively. Soil DOC concentrations varied with sampling time, and peaked one year after the prescribed burning. Our results showed that soil chemical properties (NH4+-N and pH) rather than biological properties (microbial biomass) were the main driving factors for changes in post-fire soil DOC concentrations. Current study provides an important reference for post-fire and seasonal soil C cycling in plantation forests of Northeast China.

2.
Sci Total Environ ; 792: 148381, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34146805

RESUMEN

Manures, storages for antibiotic resistance genes (ARGs), pollute soil and water as well as endanger human health. Recently, we have been searching a better solution to remove antibiotics and ARGs during aerobic composting. Here, the dynamics of chitosan addition on the profiles of 71 ARGs, bacterial communities, chlortetracycline (CTC), ofloxacin (OFX) were investigated in chicken manure composting and compared with zeolite addition. Chitosan addition effectively reduces antibiotics contents (CTC under detection limit, OFX 90.96%), amounts (18) and abundance (56.7%, 11.1% higher than zeolite addition) of ARGs and mobile genetic elements (MGEs) after 42 days composting. Network analysis indicated that a total of 27 genera strains assigned into 4 phyla (Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes) were the potential hosts of ARGs. Redundancy analysis (RDA) demonstrated that bacterial community succession is the main contributor in the variation of ARGs. Overall, chitosan addition may effect bacterial composition by influencing physic-chemical properties and the concentration of antibiotics, Cu2+, Zn2+ to reduce the risk of ARG transmission. This study gives a new strategy about antibiotics and ARGs removal from composting on the basis of previous studies.


Asunto(s)
Quitosano , Compostaje , Animales , Antibacterianos , Pollos , Genes Bacterianos , Humanos , Estiércol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA