Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 119(1): 432-444, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38635415

RESUMEN

Thiamine functions as a crucial activator modulating plant health and broad-spectrum stress tolerances. However, the role of thiamine in regulating plant virus infection is largely unknown. Here, we report that the multifunctional 17K protein encoded by barley yellow dwarf virus-GAV (BYDV-GAV) interacted with barley pyrimidine synthase (HvTHIC), a key enzyme in thiamine biosynthesis. HvTHIC was found to be localized in chloroplast via an N-terminal 74-amino acid domain. However, the 17K-HvTHIC interaction restricted HvTHIC targeting to chloroplasts and triggered autophagy-mediated HvTHIC degradation. Upon BYDV-GAV infection, the expression of the HvTHIC gene was significantly induced, and this was accompanied by accumulation of thiamine and salicylic acid. Silencing of HvTHIC expression promoted BYDV-GAV accumulation. Transcriptomic analysis of HvTHIC silenced and non-silenced barley plants showed that the differentially expressed genes were mainly involved in plant-pathogen interaction, plant hormone signal induction, phenylpropanoid biosynthesis, starch and sucrose metabolism, photosynthesis-antenna protein, and MAPK signaling pathway. Thiamine treatment enhanced barley resistance to BYDV-GAV. Taken together, our findings reveal a molecular mechanism underlying how BYDV impedes thiamine biosynthesis to uphold viral infection in plants.


Asunto(s)
Hordeum , Enfermedades de las Plantas , Proteínas de Plantas , Tiamina , Hordeum/virología , Hordeum/genética , Hordeum/metabolismo , Tiamina/metabolismo , Tiamina/biosíntesis , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Luteovirus/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas Virales/metabolismo , Proteínas Virales/genética , Cloroplastos/metabolismo , Ácido Salicílico/metabolismo , Interacciones Huésped-Patógeno , Resistencia a la Enfermedad/genética
2.
Phys Chem Chem Phys ; 26(26): 18321-18332, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912536

RESUMEN

The biphenyl molecule (C12H10) acts as a fundamental molecular backbone in the stereoselective synthesis of organic materials due to its inherent twist angle causing atropisomerism in substituted derivatives and in molecular mass growth processes in circumstellar environments and combustion systems. Here, we reveal an unconventional low-temperature phenylethynyl addition-cyclization-aromatization mechanism for the gas-phase preparation of biphenyl (C12H10) along with ortho-, meta-, and para-substituted methylbiphenyl (C13H12) derivatives through crossed molecular beams and computational studies providing compelling evidence on their formation via bimolecular gas-phase reactions of phenylethynyl radicals (C6H5CC, X2A1) with 1,3-butadiene-d6 (C4D6), isoprene (CH2C(CH3)CHCH2), and 1,3-pentadiene (CH2CHCHCHCH3). The dynamics involve de-facto barrierless phenylethynyl radical additions via submerged barriers followed by facile cyclization and hydrogen shift prior to hydrogen atom emission and aromatization to racemic mixtures (ortho, meta) of biphenyls in overall exoergic reactions. These findings not only challenge our current perception of biphenyls as high temperature markers in combustion systems and astrophysical environments, but also identify biphenyls as fundamental building blocks of complex polycyclic aromatic hydrocarbons (PAHs) such as coronene (C24H12) eventually leading to carbonaceous nanoparticles (soot, grains) in combustion systems and in deep space thus affording critical insight into the low-temperature hydrocarbon chemistry in our universe.

3.
Chem Commun (Camb) ; 60(11): 1404-1407, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38174640

RESUMEN

A high temperature phenyl-mediated addition-cyclization-dehydrogenation mechanism to form peri-fused polycyclic aromatic hydrocarbon (PAH) derivatives-illustrated through the formation of dibenzo[e,l]pyrene (C24H14)-is explored through a gas-phase reaction of the phenyl radical (C6H5˙) with triphenylene (C18H12) utilizing photoelectron photoion coincidence spectroscopy (PEPICO) combined with electronic structure calculations. Low-lying vibrational modes of dibenzo[e,l]pyrene exhibit out-of-plane bending and are easily populated in high temperature environments such as combustion flames and circumstellar envelopes of carbon stars, thus stressing dibenzo[e,l]pyrene as a strong target for far-IR astronomical surveys.

4.
ACS Cent Sci ; 9(12): 2241-2250, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38161363

RESUMEN

Reactions in interstellar ices are shown to be capable of producing key prebiotic molecules without energetic radiation that are necessary for the origins of life. When present in interstellar ices, carbamic acid (H2NCOOH) can serve as a condensed-phase source of the molecular building blocks for more complex proteinogenic amino acids. Here, Fourier transform infrared spectroscopy during heating of analogue interstellar ices composed of carbon dioxide and ammonia identifies the lower limit for thermal synthesis to be 62 ± 3 K for carbamic acid and 39 ± 4 K for its salt ammonium carbamate ([H2NCOO-][NH4+]). While solvation increases the rates of formation and decomposition of carbamic acid in ice, the absence of solvent effects after sublimation results in a significant barrier to dissociation and a stable gas-phase molecule. Photoionization reflectron time-of-flight mass spectrometry permits an unprecedented degree of sensitivity toward gaseous carbamic acid and demonstrates sublimation of carbamic acid from decomposition of ammonium carbamate and again at higher temperatures from carbamic acid dimers. Since the dimer is observed at temperatures up to 290 K, similar to the environment of a protoplanetary disk, this dimer is a promising reservoir of amino acids during the formation of stars and planets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA