Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 23(1): 264, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35382737

RESUMEN

BACKGROUND: The plant-specific IQ67-domain (IQD) gene family plays an important role in plant development and stress responses. However, little is known about the IQD family in common wheat (Triticum aestivum L), an agriculturally important crop that provides more than 20% of the calories and protein consumed in the modern human diet. RESULTS: We identified 125 IQDs in the wheat genome and divided them into four subgroups by phylogenetic analysis. The IQDs belonging to the same subgroup had similar exon-intron structure and conserved motif composition. Polyploidization contributed significantly to the expansion of IQD genes in wheat. Characterization of the expression profile of these genes revealed that a few T. aestivum (Ta)IQDs showed high tissue-specificity. The stress-induced expression pattern also revealed a potential role of TaIQDs in environmental adaptation, as TaIQD-2A-2, TaIQD-3A-9 and TaIQD-1A-7 were significantly induced by cold, drought and heat stresses, and could be candidates for future functional characterization. In addition, IQD genes in the A, B and D subgenomes displayed an asymmetric evolutionary pattern, as evidenced by their different gain or loss of member genes, expression levels and nucleotide diversity. CONCLUSIONS: This study elucidated the potential biological functions and evolutionary relationships of the IQD gene family in wheat and revealed the divergent fates of IQD genes during polyploidization.


Asunto(s)
Genoma de Planta , Familia de Multigenes , Proteínas de Plantas , Triticum , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Triticum/genética , Triticum/metabolismo
2.
BMC Plant Biol ; 22(1): 454, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36131236

RESUMEN

BACKGROUND: A gene family comprises a group of genes with similar functional domains that play various roles in plant growth, development, and responses to environmental stimuli. Barley (Hordeum vulgare L.) is the fourth most cultivated cereal crop worldwide, and it is an important model species for genetic studies. Systematic identification and annotation of gene families are key for studies of molecular function and evolutionary history. RESULTS: We constructed a multi-omics database containing 5593 genes of 77 gene families called the Barley Gene Family Database (BGFD: http://barleygfdb.com ). BGFD is a free, user-friendly, and web-accessible platform that provides data on barley family genes. BGFD provides intuitive visual displays to facilitate studies of the physicochemical properties, gene structure, phylogenetic relationships, and motif organization of genes. Massive multi-omics datasets have been acquired and processed to generate an atlas of expression pattern profiles and genetic variation in BGFD. The platform offers several practical toolkits to conduct searches, browse, and employ BLAST functions, and the data are downloadable. CONCLUSIONS: BGFD will aid research on the domestication and adaptive evolution of barley; it will also facilitate the screening of candidate genes and exploration of important agronomic traits in barley.


Asunto(s)
Hordeum , Hordeum/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA