RESUMEN
Acetohydroxyacid synthase (AHAS) is one of the key enzymes of the biosynthesis of branched-chain amino acids, it is also an effective target for the screening of herbicides and antibiotics. In this study we present a method for preparing Escherichia coli AHAS I holoenzyme (EcAHAS I) with exceptional stability, which provides a solid ground for us to re-investigate the in vitro catalytic properties of the protein. The results show EcAHAS I synthesized in this way exhibits similar function to Bacillus subtilis acetolactate synthase in its catalysis with pyruvate and 2-ketobutyrate (2-KB) as dual-substrate, producing four 2-hydroxy-3-ketoacids including (S)-2-acetolactate, (S)-2-aceto-2-hydroxybutyrate, (S)-2-propionyllactate, and (S)-2-propionyl-2-hydroxybutyrate. Quantification of the reaction indicates that the two substrates almost totally consume, and compound (S)-2-aceto-2- hydroxybutyrate forms in the highest yield among the four major products. Moreover, the protein also condenses two molecules of 2-KB to furnish (S)-2-propionyl-2-hydroxybutyrate. Further exploration manifests that EcAHAS I ligates pyruvate/2-KB and nitrosobenzene to generate two arylhydroxamic acids N-hydroxy-N-phenylacetamide and N-hydroxy-N-phenyl- propionamide. These findings enhance our comprehension of the catalytic characteristics of EcAHAS I. Furthermore, the application of this enzyme as a catalyst in construction of C-N bonds displays promising potential.
Asunto(s)
Acetolactato Sintasa , Escherichia coli , Acetolactato Sintasa/química , Glucógeno Sintasa , Hidroxibutiratos , Piruvatos , HoloenzimasRESUMEN
Hydrogen sulfide (H2S) plays a significant role in the onset and progression of cancer. It has led to increased interest in its potential as a diagnostic tool owing to its overexpression in cancer. However, research into the anti-cancer activity of H2S, particularly its ability to promote apoptosis, is hindered by the lack of effective detection tools. To gain a comprehensive understanding of the targeted efficacy of H2S in promoting cancer cell apoptosis, we designed and synthesized a self-immolative near-infrared fluorescent diagnostic probe, named YH-NO2. The activation of this self-immolative reaction is dependent on the presence of nitroreductase (NTR) overexpressed in tumor cells. The design of YH-NO2 involves releasing fluorophores through the activated self-immolative reaction for detection, while simultaneously releasing H2S-loaded self-immolative spacers to promote cancer cell apoptosis. Consequently, YH-NO2 achieves a seamless integration of recognizing and promoting cancer cell apoptosis through its self-immolative structure. This dual function allows YH-NO2 to recognize NTR activity in cells under varying hypoxia levels and differentiate between normal cells and cancer cells using imaging technology. Notably, YH-NO2 exhibits remarkable stability in cellular environments, providing controlled and selective H2S release, thereby targeting the elimination of cancer cells through the promotion of apoptosis. Furthermore, in vivo experiments have demonstrated that YH-NO2 can accurately identify tumor tissue and effectively reduce its size by utilizing its apoptosis-promoting properties. These findings not only provide further evidence for the anti-cancer activity of H2S but also offer valuable tools for understanding the complex relationship between H2S and cancer.
Asunto(s)
Sulfuro de Hidrógeno , Neoplasias , Humanos , Colorantes Fluorescentes/química , Dióxido de Nitrógeno , Células HeLa , Apoptosis , Neoplasias/diagnósticoRESUMEN
Abnormal mitochondrial state has been implicated in the pathogenesis of various diseases including neurodegenerative disorders, myopathies, cardiovascular diseases, and cancers. Assessing mitochondrial functionality can be achieved by monitoring alterations in mitochondrial polarity and mitochondrial DNA (mtDNA) integrity, which serve as valuable biomarkers. Hydrogen sulfide (H2S), a gaseous signaling molecule, plays a regulatory role in mitochondrial respiratory chain activity, ATP synthesis, and calcium ion balance, thereby influencing cellular metabolism and signal transduction. Investigating the interplay between mitochondrial H2S, polarity, and mtDNA can enhance our understanding of the underlying regulatory mechanisms involved in H2S-mediated mitochondrial functions. To address this, we designed a mitochondria-targeted multichannel fluorescent probe, HNA, capable of cascaded detection of H2S and polarity, as well as parallel detection of mtDNA. The probe exhibited a significant turn-on response to H2S, emitting at approximately 604 nm, while the product HNAP demonstrated high sensitivity to polarity within the wavelength range of 526-591 nm. Additionally, the probe was able to bind to DNA, resulting in an enhanced long-wave emission at 668 nm. Facilitated by HNA, our study provides novel insights into the role of mitochondrial H2S in maintaining mitochondrial polarity and validates its protective effect on mtDNA through antioxidative mechanisms. Overall, this work proposes a potential therapeutic strategy for modulating the inflammatory process in mitochondrial-related diseases.
Asunto(s)
ADN Mitocondrial , Sulfuro de Hidrógeno , Humanos , ADN Mitocondrial/metabolismo , Colorantes Fluorescentes/metabolismo , Sulfuro de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales , Células HeLaRESUMEN
Owing to its difficulty in degrading and ease of accumulation in the body, perfluorooctanoic acid (PFOA) has a detrimental effect on reproduction. This study aimed to examine the effect of PFOA concentration in follicular fluid during ovulation stimulation on embryo quality and the impact of PFOA exposure on the metabolic components of follicular fluid. This was a single-center prospective study that included 25 patients with diminished ovarian reserve (DOR), 25 with normal ovarian reserve (NOR), and 25 with polycystic ovary syndrome (PCOS). Follicular fluid samples were analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry. We demonstrated that the PFOA levels of follicular fluid in the DOR group were higher than those in the NOR group and PCOS group (P < 0.05). PFOA concentration in the PCOS group was negatively correlated with high-quality embryos (P < 0.05). To gain more insight into the impact of PFOA on the metabolic composition of follicular fluid, we classified the DOR group based on the PFOA concentration, for which metabolomic analysis was performed. In the high-concentration PFOA group, there was an increase and a decrease in three and nine metabolites, respectively, compared to that in the low-concentration group. These results suggest that PFOA may alter the metabolic composition of follicular fluid, thus, affecting ovarian reserve function.
Asunto(s)
Reserva Ovárica , Síndrome del Ovario Poliquístico , Femenino , Humanos , Síndrome del Ovario Poliquístico/metabolismo , Estudios Prospectivos , Reserva Ovárica/fisiología , Líquido Folicular/metabolismo , Fertilización In VitroRESUMEN
The objective of this study was to obtain a better understanding of the effects of meteorological factors on the prevalence and seasonality of common respiratory viruses in China, which has a subtropical climate. A retrospective study was conducted by identifying children admitted to a hospital with acute respiratory infections due to seven common viruses between January 2001 and December 2011. A total of 42,104 nasopharyngeal samples were tested for respiratory syncytial virus (RSV), influenza A and B viruses (IV-A and IV-B), parainfluenza viruses 1-3 (PIV-1, PIV-2, PIV-3), and adenovirus (ADV) by direct immunofluorescence assay. Meteorological data were obtained from Suzhou Weather Bureau. Correlations of viral prevalence with meteorological factors were evaluated using Spearman rank correlation and partial correlation. Multivariate time-series analysis including an autoregressive integrated moving average (ARIMA) model and generalized linear Poisson models was conducted to study the effect of meteorological factors on the prevalence of respiratory virus infection. RSV and IV-A activity showed distinctive winter peak, whereas PIV-3 and ADV peaked in the summer. Incidence of RSV was correlated with low environmental temperature, and PIV-3 only with high temperature. IV-A activity was correlated with both low temperature and high relative humidity. ADV activity was correlated with high total rainfall. In the ARIMA model, RSV-associated hospitalizations were predictable, and the monthly number of RSV cases decreased by 11.25 % (95 % CI: 5.34 % to 16.79 %) for every 1 °C increase in the average temperature. Seasonality of certain respiratory virus may be explained by meteorological influences. The impact of meteorological factors on the prevalence of RSV may be useful for predicting the activity of this virus.
Asunto(s)
Conceptos Meteorológicos , Infecciones del Sistema Respiratorio/epidemiología , Clima Tropical , Adolescente , Niño , Preescolar , China/epidemiología , Femenino , Humanos , Incidencia , Lactante , Masculino , Nasofaringe/virología , Prevalencia , Estudios Retrospectivos , Estaciones del Año , Virus/clasificación , Virus/aislamiento & purificaciónRESUMEN
The design and development of a facile synthesis approach to construct novel materials for the rapid adsorption and removal of environmental pollutants are of significant interest. In this work, we report the rational design and facile synthesis of magnetic core-shell-based microporous organic networks, Fe3O4@MON-TBPT-TEB (TTMON, achieved by reacting 2,4,6-tris(p-bromophenyl) triazine and 1,3,5-triethynylbenzene) and Fe3O4@MON-TBPM-DEBP (TDMON, achieved by reacting tetrakis (4-bromophenyl) methane and 4-4'-diethynylbiphenyl). These MONs possessed excellent dispersity, electrostatic attraction as well as plenty of π-π and hydrophobic interaction sites enabled them to efficiently absorb targeted environmental pollutants. TTMON and TDMON exhibited excellent adsorption capacities of 440 and 510 mg g-1, respectively, at 25 °C for 2,4,6-trichlorophenol (TCP). TCP, 2,4-dichlorophenol (DCP), 2-naphthol (2-NT) and 4-nitrophenol (4-NP) from aqueous solution were treated by both MONs, followed by their analysis with high-performance liquid chromatography (HPLC). For TDMON, the proposed SPE-HPLC-UV method showed an LOD of 0.03 µg L-1, LOQ of 0.11 µg L-1, and a wide linear range of 1-1000 µg L-1 for TCP. The adsorption kinetics, thermodynamics, isotherms, effect of pH and humic acid (HA), ionic strength, regeneration, and reusability of the MONs were also studied. The results revealed that the novel-designed MONs have potential applications as efficient adsorbents in sample pretreatment.
RESUMEN
Perfluoroalkyl substances (PFAS) are persistent organic pollutants that pose significant risks to human health and the environment. Efficient and selective enrichment of these compounds was crucial for their accurate detection and quantification in complex matrices. Herein, we report a novel magnetic solid-phase extraction (MSPE) method using fluorine-functionalized magnetic amino-microporous organic network (Fe3O4@MONNH2@F7) adsorbent for the efficient enrichment of PFAS from aqueous samples. The core-shell Fe3O4@MONNH2@F7 nanosphere was synthesized, featuring magnetic Fe3O4 nanoparticles as the core and a porous amino-functionalized MONs coating as the shell, which was further modified by fluorination. The synthesized adsorbent material exhibited high specific surface area, hydrophobicity, and abundant fluorine groups, facilitating efficient and selective adsorption of PFAS via electrostatic attraction, hydrophobic-hydrophobic interactions, fluorine-fluorine interactions, π-CF interactions and hydrogen bonding. Furthermore, the MSPE method coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) allowed for the rapid, sensitive, and accurate determination of ultra-trace PFAS in real water samples, human serum, and human follicular fluid. Under optimal conditions, the established MSPE method demonstrated a linear range (2 to 2000 ng L-1), with a correlation coefficient exceeding 0.9977, low limits of detection ranging from 0.54 to 1.47 ng L-1, with a relative standard deviation (RSD) < 9.1%. Additionally, the method showed excellent performance in complex real samples (recovery ratio of 81.7 to 121.6 %). The adsorption mechanism was investigated through kinetic, isotherm, and molecular simulation studies, revealing that the introduction of fluorine groups enhanced the hydrophobic interaction and fluorine-fluorine attraction between the adsorbent and PFAS. This work provides a proof-of-concept strategy for designing adsorbent materials with high efficiency and selectivity by post-modification, which has great potential for the detection and analysis of PFAS in complex samples.
Asunto(s)
Flúor , Fluorocarburos , Nanopartículas de Magnetita , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua , Fluorocarburos/química , Fluorocarburos/análisis , Fluorocarburos/aislamiento & purificación , Flúor/química , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Humanos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Cromatografía Líquida de Alta Presión/métodos , Porosidad , Nanopartículas de Magnetita/química , Interacciones Hidrofóbicas e Hidrofílicas , Límite de DetecciónRESUMEN
This is the first report of NUP98::LEDGF positive malignant hematological tumor expressing T cell and myeloid lineage antigens. Patients carrying this fusion gene have a high relapse rate and a poor prognosis, allo-HSCT may be an option to cure this disease. This patient underwent allo-HSCT, a relapse occurred three months post-transplantation. Subsequent screening at our hospital confirmed the presence of the NUP98::LEDGF fusion gene, salvage therapy was administered, followed by a successful second allo-HSCT. Furthermore, we included eight previously reported cases from the literature for analysis and discuss.
RESUMEN
OBJECTIVE: To describe the features of ETV6::ABL1 AML as well as the clinical treatment and outcomes. METHODS: Clinical data were collected from three patients diagnosed with ETV6::ABL1 AML at Hebei Yanda Lu Daopei Hospital and Beijing Lu Daopei Hospital. Their clinical and laboratory features were analyzed, and the treatment process and outcomes were described. Ten reported cases of ETV6::ABL1 AML from the literature were also included for analysis. RESULTS: The median age of the patients was 34 years, and 2 patients were male. No patient had a history of blood disorders before diagnosis. After relapse, they were referred to our hospital, where the ETV6::ABL1 gene was detected. Unfortunately, Patient 1 died rapidly after leukemia relapse due to severe infection. Patients 2 and 3 received salvage therapy with a dasatinib-containing regimen, followed by allo-HSCT, and are currently alive and disease-free. CONCLUSION: ETV6::ABL1 is a rare but recurrent genetic aberration in AML, and the combined use of fluorescence in situ hybridization and PCR can better identify this fusion gene. Patients carrying ETV6::ABL1 have a high relapse rate and a poor prognosis. TKIs are a reasonable treatment option for this group, and allo-HSCT may be curative.
Asunto(s)
Proteína ETS de Variante de Translocación 6 , Leucemia Mieloide Aguda , Proteínas de Fusión Oncogénica , Proteínas Proto-Oncogénicas c-ets , Proteínas Represoras , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Proteínas de Fusión Oncogénica/genética , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Resultado del TratamientoRESUMEN
α-DCs (α-dicarbonyls) have been proven to be closely related to aging and the onset and development of many chronic diseases. The wide presence of this kind of components in various foods and beverages has been unambiguously determined, but their occurrence in various phytomedicines remains in obscurity. In this study, we established and evaluated an HPLC-UV method and used it to measure the contents of four α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) in 35 Chinese herbs after they have been derivatized with 4-nitro-1,2-phenylenediamine. The results uncover that 3-DG is the major component among the α-DCs, being detectable in all the selected herbs in concentrations ranging from 22.80 µg/g in the seeds of Alpinia katsumadai to 7032.75 µg/g in the fruit of Siraitia grosuenorii. The contents of the other three compounds are much lower than those of 3-DG, with GO being up to 22.65 µg/g, MGO being up to 55.50 µg/g, and DA to 18.75 µg/g, respectively. The data show as well the contents of the total four α-DCs in the herbs are generally in a comparable level to those in various foods, implying that herb medicines may have potential risks on human heath in view of the α-DCs.
Asunto(s)
Desoxiglucosa , Medicamentos Herbarios Chinos , Glioxal , Piruvaldehído , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Piruvaldehído/análisis , Cromatografía Líquida de Alta Presión , Desoxiglucosa/análogos & derivados , Desoxiglucosa/análisis , Glioxal/análisis , Diacetil/análisis , Estructura Molecular , Frutas/química , Plantas Medicinales/química , Semillas/químicaRESUMEN
Both single-atom nanozymes (SAzymes) and protein-template metal nanoparticles have attracted comprehensive attention in several respects owing to their excellent catalytic performance, green facile synthesis process, and robustness. Herein, the peroxidase-like activity of single-atom copper anchored on bovine hemoglobin-template gadolinium nanoparticles (Cu,Gd@BHbFITC NPs) were successfully synthesized and two sensitive turn-on fluorescence strategies for tyrosinase (TYR) activity sensing were proposed for the first time. For strategy â , TYR sensing was carried out from 1.00 to 7.80 U/mL with the detection limit (LOD) of 0.20 U/mL based on the fluorescence resonance energy transfer (FRET) between the fluorescein isothiocyanate (FITC) and the in situ generated polydopamine dots (PDA-dots). For strategy â ¡, The LOD of TYR was 0.05 U/mL with the linear range of 0.40-19.70 U/mL based on the elimination of inner-filter effect (IEF) between FITC and the reaction product (RC) of phenol and 4-Aminoantipyrine (AAP). The smartphone-assisted sensing platform was applied to construct the on-site detection of TYR with both strategies. The developed probe possessed good selectivity and was successfully utilized to TYR detection in serum samples.
Asunto(s)
Nanopartículas del Metal , Peroxidasa , Transferencia Resonante de Energía de Fluorescencia , Monofenol Monooxigenasa , PeroxidasasRESUMEN
Hypochlorous acid (HOCl), mainly generated in mitochondria, plays a critical role in various physiological processes. To better understand the role and function of HOCl in mitochondria, herein, we present the design and synthesis of a Mito-QL reporter for probing the HOCl within mitochondria without other interference generated in living cells. Through the combination of TICT/ICT mechanisms, probe Mito-QL, with large stokes shift (203 nm) and low background fluorescence, exhibited excellent sensitivity (900-fold fluorescence enhancement) and selectivity towards HOCl (LOD = 2.4 nM). The co-location experiments confirmed that probe Mito-QL can firstly localize in the mitochondria and then react with HOCl in mitochondria. Also, the probe is capable of imaging endogenous and exogenous HOCl even the generation of HOCl during the ferroptosis of cells, which is beneficial for more efficient application in biological imaging.
Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Mitocondrias , Imagen ÓpticaRESUMEN
During biological detection, the toxicity caused by probes to living organisms is neglected. In this study, an analyte-compensated fluorescent probe (NP-SN3) was constructed for the detection of H2S. Through experiments with HepG2 cells and zebrafish embryos and larvae, the NP-SN3 probe showed no significant difference in imaging performance compared with the traditional probe (NP-N3) but exhibited lower detection-induced toxicity in the imaging of liver fibrosis in activated HSC-T6 cells. During the development of zebrafish embryos and continuous administration in rats, NP-SN3 showed a lower death rate, higher hatchability and lower malformation in zebrafish embryos and milder pathological symptoms in stained rat tissues.
Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Animales , Colorantes Fluorescentes/toxicidad , Larva , Ratas , Pez CebraRESUMEN
In the present study, a kind of magnetic supramolecular metal-organic coordination complex (SMOCC) functionalized MoS2 was prepared with one-step in aqueous solution for enzyme immobilization. As possessing a protective nanocoating of PDA/PEI/Cu2+ (polydopamine: PDA, polyethyleneimine: PEI), the proposed material can provide biocompatible microenvironment and flexible adhesion force on particle interface, which is conductive to loading laccase (170.0 ± 1.8 mg/g) with high activity (93.0 ± 1.1 %). Compared with the free laccase, the immobilized laccase has higher stability in a broader range of pH (3-10), temperature (20-80 °C), storage time (1-18 days) and reusability (1-16 cycles). The removal of carcinogenic persistent organic pollutant malachite green in the water with the immobilized laccase shows a higher efficiency (89.4 ± 1.2 %) than free laccase (16.2 ± 0.2 %). The Fe3O4@MoS2@(PDA/PEI/Cu2+) nanocomposites can also be used successfully to immobilize trypsin, lipase and catalase respectively, showing a satisfactory enzyme loading (157.0 ± 0.1 mg/g, 151.6 ± 1.4 mg/g, 162.6 ± 1.6 mg/g, respectively) and activity (95.0 ± 0.5 %, 90.0 ± 0.8 %, 91.0 ± 0.9 %, respectively). The MoS2 can be replaced by carbon material and similar results can be obtained.