Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 17(6): 704-11, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27064374

RESUMEN

The asymmetric partitioning of fate-determining proteins has been shown to contribute to the generation of CD8(+) effector and memory T cell precursors. Here we demonstrate the asymmetric partitioning of mTORC1 activity after the activation of naive CD8(+) T cells. This results in the generation of two daughter T cells, one of which shows increased mTORC1 activity, increased glycolytic activity and increased expression of effector molecules. The other daughter T cell has relatively low mTORC1 activity and increased lipid metabolism, expresses increased amounts of anti-apoptotic molecules and subsequently displays enhanced long-term survival. Mechanistically, we demonstrate a link between T cell antigen receptor (TCR)-induced asymmetric expression of amino acid transporters and RagC-mediated translocation of mTOR to the lysosomes. Overall, our data provide important insight into how mTORC1-mediated metabolic reprogramming affects the fate decisions of T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , División Celular/inmunología , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Células Precursoras de Linfocitos T/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Femenino , Glucólisis , Memoria Inmunológica , Metabolismo de los Lípidos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transporte de Proteínas , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
2.
Nat Immunol ; 15(5): 457-64, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24705297

RESUMEN

SGK1 is an AGC kinase that regulates the expression of membrane sodium channels in renal tubular cells in a manner dependent on the metabolic checkpoint kinase complex mTORC2. We hypothesized that SGK1 might represent an additional mTORC2-dependent regulator of the differentiation and function of T cells. Here we found that after activation by mTORC2, SGK1 promoted T helper type 2 (TH2) differentiation by negatively regulating degradation of the transcription factor JunB mediated by the E3 ligase Nedd4-2. Simultaneously, SGK1 repressed the production of interferon-γ (IFN-γ) by controlling expression of the long isoform of the transcription factor TCF-1. Consistent with those findings, mice with selective deletion of SGK1 in T cells were resistant to experimentally induced asthma, generated substantial IFN-γ in response to viral infection and more readily rejected tumors.


Asunto(s)
Asma/inmunología , Proteínas Inmediatas-Precoces/metabolismo , Melanoma Experimental/inmunología , Complejos Multiproteicos/inmunología , Infecciones por Poxviridae/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR/inmunología , Células TH1/inmunología , Células Th2/inmunología , Virus Vaccinia/inmunología , Inmunidad Adaptativa/genética , Animales , Diferenciación Celular/genética , Células Cultivadas , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Regulación de la Expresión Génica/genética , Factor Nuclear 1-alfa del Hepatocito , Proteínas Inmediatas-Precoces/genética , Interferón gamma/genética , Interferón gamma/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ubiquitina-Proteína Ligasas Nedd4 , Proteínas Serina-Treonina Quinasas/genética , Factor 1 de Transcripción de Linfocitos T/genética , Factor 1 de Transcripción de Linfocitos T/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Carga Tumoral/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Immunol Rev ; 308(1): 93-104, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35535447

RESUMEN

Healthy pregnancy requires maternal immune tolerance to both fetal and placental tissues which contain a range of self- and non-self-antigens. While many of the components and mechanisms of maternal-fetal tolerance have been investigated in detail and previously and thoroughly reviewed (Erlebacher A. Annu Rev Immunol. 2013;31:387-411), the role of autoimmune regulator (Aire), a critical regulator of central tolerance expressed by medullary thymic epithelial cells (mTECs), has been less explored. Aire is known to facilitate the expression of a range of otherwise tissue-specific antigens (TSAs) in mTECs, and here we highlight recent work showing a role for mTEC-mediated thymic selection in maintaining maternal-fetal tolerance. Recently, however, our group and others have identified additional populations of extrathymic Aire-expressing cells (eTACs) in the secondary lymphoid organs. These hematopoietic antigen-presenting cells possess the ability to induce functional inactivation and/or deletion of cognate T cells, and deletion of maternal eTACs during pregnancy increases T-cell activation in the lymph nodes and lymphocytic infiltration of the uterus, leading to pregnancy complications including intrauterine growth restriction (IUGR) and fetal resorption. In this review, we briefly summarize findings related to essential Aire biology, discuss the known roles of Aire-deficiency related to pregnancy complications and infertility, review the newly discovered role for eTACs in the maintenance of maternal-fetal tolerance-as well as recent work defining eTACs at the single-cell level-and postulate potential mechanisms by which eTACs may regulate this process.


Asunto(s)
Placenta , Complicaciones del Embarazo , Antígenos , Células Epiteliales/metabolismo , Femenino , Humanos , Tolerancia Inmunológica , Embarazo , Complicaciones del Embarazo/metabolismo , Linfocitos T , Timo
4.
J Immunol ; 211(12): 1767-1782, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37947442

RESUMEN

Understanding the mechanisms underlying the acquisition and maintenance of effector function during T cell differentiation is important to unraveling how these processes can be dysregulated in the context of disease and manipulated for therapeutic intervention. In this study, we report the identification of a previously unappreciated regulator of murine T cell differentiation through the evaluation of a previously unreported activity of the kinase inhibitor, BioE-1197. Specifically, we demonstrate that liver kinase B1 (LKB1)-mediated activation of salt-inducible kinases epigenetically regulates cytokine recall potential in effector CD8+ and Th1 cells. Evaluation of this phenotype revealed that salt-inducible kinase-mediated phosphorylation-dependent stabilization of histone deacetylase 7 (HDAC7) occurred during late-stage effector differentiation. HDAC7 stabilization increased nuclear HDAC7 levels, which correlated with total and cytokine loci-specific reductions in the activating transcription mark histone 3 lysine 27 acetylation (H3K27Ac). Accordingly, HDAC7 stabilization diminished transcriptional induction of cytokine genes upon restimulation. Inhibition of this pathway during differentiation produced effector T cells epigenetically poised for enhanced cytokine recall. This work identifies a previously unrecognized target for enhancing effector T cell functionality.


Asunto(s)
Citocinas , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas , Animales , Ratones , Diferenciación Celular , Citocinas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
5.
J Immunol ; 209(12): 2287-2291, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36469844

RESUMEN

The mechanistic target of rapamycin is an essential regulator of T cell metabolism and differentiation. In this study, we demonstrate that serum- and glucocorticoid-regulated kinase 1 (SGK1), a downstream node of mechanistic target of rapamycin complex 2 signaling, represses memory CD8+ T cell differentiation. During acute infections, murine SGK1-deficient CD8+ T cells adopt an early memory precursor phenotype leading to more long-lived memory T cells. Thus, SGK1-deficient CD8+ T cells demonstrate an enhanced recall capacity in response to reinfection and can readily reject tumors. Mechanistically, activation of SGK1-deficient CD8+ T cells results in decreased Foxo1 phosphorylation and increased nuclear translocation of Foxo1 to promote early memory development. Overall, SGK1 might prove to be a powerful target for enhancing the efficacy of vaccines and tumor immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Diana Mecanicista del Complejo 2 de la Rapamicina , Células T de Memoria , Proteínas Serina-Treonina Quinasas , Animales , Ratones , Diferenciación Celular , Memoria Inmunológica/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sirolimus , Serina-Treonina Quinasas TOR/metabolismo
7.
J Immunol ; 207(3): 913-922, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34290107

RESUMEN

Metabolic programming is integrally linked to immune cell function. Nowhere is this clearer than in the differentiation of macrophages. Proinflammatory M1 macrophages primarily use glycolysis as a rapid energy source but also to generate antimicrobial compounds, whereas alternatively activated M2 macrophages primarily rely on oxidative phosphorylation for the longevity required for proper wound healing. mTOR signaling has been demonstrated to be a key regulator of immune cell metabolism and function. mTORC2 signaling is required for the generation of M2 macrophages, whereas the role of mTORC1 signaling, a key regulator of glycolysis, has been controversial. By using genetic deletion of mTORC1 signaling in C57BL/6 mouse macrophages, we observed enhanced M1 macrophage function in vitro and in vivo. Surprisingly, this enhancement occurred despite a significant defect in M1 macrophage glycolytic metabolism. Mechanistically, enhanced M1 function occurred because of inhibition of the class III histone deacetylases the sirtuins, resulting in enhanced histone acetylation. Our findings provide a counterpoint to the paradigm that enhanced immune cell function must occur in the presence of increased cellular metabolism and identifies a potential, pharmacologic target for the regulation of inflammatory responses.


Asunto(s)
Inflamación/inmunología , Macrófagos/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Acetilación , Animales , Células Cultivadas , Reprogramación Celular , Citocinas/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Sirtuinas/metabolismo , Células TH1/inmunología
8.
J Immunol ; 201(2): 481-492, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29884702

RESUMEN

The mechanistic/mammalian target of rapamycin (mTOR) has emerged as a critical integrator of signals from the immune microenvironment capable of regulating T cell activation, differentiation, and function. The precise role of mTOR in the control of regulatory T cell (Treg) differentiation and function is complex. Pharmacologic inhibition and genetic deletion of mTOR promotes the generation of Tregs even under conditions that would normally promote generation of effector T cells. Alternatively, mTOR activity has been observed to be increased in Tregs, and the genetic deletion of the mTOR complex 1 (mTORC1)-scaffold protein Raptor inhibits Treg function. In this study, by employing both pharmacologic inhibitors and genetically altered T cells, we seek to clarify the role of mTOR in Tregs. Our studies demonstrate that inhibition of mTOR during T cell activation promotes the generation of long-lived central Tregs with a memory-like phenotype in mice. Metabolically, these central memory Tregs possess enhanced spare respiratory capacity, similar to CD8+ memory cells. Alternatively, the generation of effector Tregs (eTregs) requires mTOR function. Indeed, genetic deletion of Rptor leads to the decreased expression of ICOS and PD-1 on the eTregs. Overall, our studies define a subset of mTORC1hi eTregs and mTORC1lo central Tregs.


Asunto(s)
Factores de Transcripción Forkhead/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Femenino , Memoria Inmunológica/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Activación de Linfocitos/inmunología , Masculino , Ratones , Receptor de Muerte Celular Programada 1/inmunología , Proteína Reguladora Asociada a mTOR/inmunología
10.
Cancer Immunol Immunother ; 67(8): 1271-1284, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29923026

RESUMEN

Adenosine signaling via the A2a receptor (A2aR) is emerging as an important checkpoint of immune responses. The presence of adenosine in the inflammatory milieu or generated by the CD39/CD73 axis on tissues or T regulatory cells serves to regulate immune responses. By nature of the specialized metabolism of cancer cells, adenosine levels are increased in the tumor microenvironment and contribute to tumor immune evasion. To this end, small molecule inhibitors of the A2aR are being pursued clinically to enhance immunotherapy. Herein, we demonstrate the ability of the novel A2aR antagonist, CPI-444, to dramatically enhance immunologic responses in models of checkpoint therapy and ACT in cancer. Furthermore, we demonstrate that A2aR blockade with CPI-444 decreases expression of multiple checkpoint pathways, including PD-1 and LAG-3, on both CD8+ effector T cells (Teff) and FoxP3+ CD4+ regulatory T cells (Tregs). Interestingly, our studies demonstrate that A2aR blockade likely has its most profound effects during Teff cell activation, significantly decreasing PD-1 and LAG-3 expression at the draining lymph nodes of tumor bearing mice. In contrast to previous reports using A2aR knockout models, pharmacologic blockade with CPI-444 did not impede CD8 T cell persistence or memory recall. Overall these findings not only redefine our understanding of the mechanisms by which adenosine inhibits immunity but also have important implications for the design of novel immunotherapy regimens.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Neoplasias del Colon/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica , Melanoma Experimental/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Adenosina A2A/química , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Antígenos CD/química , Antígenos CD/metabolismo , Linfocitos T CD8-positivos/inmunología , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Masculino , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T Reguladores/inmunología , Células Tumorales Cultivadas , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína del Gen 3 de Activación de Linfocitos
11.
Chembiochem ; 17(20): 1951-1960, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27432157

RESUMEN

The adenosine A2A receptor (A2A R) is expressed in immune cells, as well as brain and heart tissue, and has been intensively studied as a therapeutic target for multiple disease indications. Inhibitors of the A2A R have the potential for stimulating immune response, which could be valuable for cancer immune surveillance and mounting a response against pathogens. One well-established potent and selective small molecule A2A R antagonist, ZM-241385 (ZM), has a short pharmacokinetic half-life and the potential for systemic toxicity due to A2A R effects in the brain and the heart. In this study, we designed an analogue of ZM and tethered it to the Fc domain of the immunoglobulin IgG3 by using expressed protein ligation. The resulting protein-small molecule conjugate, Fc-ZM, retained high affinity for two Fc receptors: FcγRI and the neonatal Fc receptor, FcRn. In addition, Fc-ZM was a potent A2A R antagonist, as measured by a cell-based cAMP assay. Cell-based assays also revealed that Fc-ZM could stimulate interferon γ production in splenocytes in a fashion that was dependent on the presence of A2A R. We found that Fc-ZM, compared with the small molecule ZM, was a superior A2A R antagonist in mice, consistent with the possibility that Fc attachment can improve pharmacokinetic and/or pharmacodynamic properties of the small molecule.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Fragmentos Fab de Inmunoglobulinas/farmacología , Receptor de Adenosina A2A/metabolismo , Triazinas/farmacología , Triazoles/farmacología , Antagonistas del Receptor de Adenosina A2/síntesis química , Antagonistas del Receptor de Adenosina A2/química , Animales , Femenino , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Estructura Molecular , Receptor de Adenosina A2A/deficiencia , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Triazinas/síntesis química , Triazinas/química , Triazoles/síntesis química , Triazoles/química , Virus Vaccinia/aislamiento & purificación
12.
Proc Natl Acad Sci U S A ; 110(16): E1508-13, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23576734

RESUMEN

Many bacterial species use gliding motility in natural habitats because external flagella function poorly on hard surfaces. However, the mechanism(s) of gliding remain elusive because surface motility structures are not apparent. Here, we characterized the dynamics of the Myxococcus xanthus gliding motor protein AglR, a homolog of the Escherichia coli flagella stator protein MotA. We observed that AglR decorated a helical structure, and the AglR helices rotated when cells were suspended in liquid or when cells moved on agar surfaces. With photoactivatable localization microscopy, we found that single molecules of AglR, unlike MotA/MotB, can move laterally within the membrane in helical trajectories. AglR slowed down transiently at gliding surfaces, accumulating in clusters. Our work shows that the untethered gliding motors of M. xanthus, by moving within the membrane, can transform helical motion into linear driving forces that push against the surface.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Myxococcus xanthus/fisiología , Rayos Láser , Microscopía Fluorescente/métodos , Simulación de Dinámica Molecular , Movimiento/fisiología , Especificidad de la Especie
13.
Cell Rep ; 42(1): 111987, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640309

RESUMEN

T cell activation, proliferation, function, and differentiation are tightly linked to proper metabolic reprogramming and regulation. By using [U-13C]glucose tracing, we reveal a critical role for GOT1 in promoting CD8+ T cell effector differentiation and function. Mechanistically, GOT1 enhances proliferation by maintaining intracellular redox balance and serine-mediated purine nucleotide biosynthesis. Further, GOT1 promotes the glycolytic programming and cytotoxic function of cytotoxic T lymphocytes via posttranslational regulation of HIF protein, potentially by regulating the levels of α-ketoglutarate. Conversely, genetic deletion of GOT1 promotes the generation of memory CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Células T de Memoria , Linfocitos T CD8-positivos/metabolismo , Linfocitos T Citotóxicos , Diferenciación Celular/genética , Glucosa/metabolismo , Memoria Inmunológica/genética
14.
Immunohorizons ; 7(6): 493-507, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37358498

RESUMEN

In order to study mechanistic/mammalian target of rapamycin's role in T cell differentiation, we generated mice in which Rheb is selectively deleted in T cells (T-Rheb-/- C57BL/6J background). During these studies, we noted that T-Rheb-/- mice were consistently heavier but had improved glucose tolerance and insulin sensitivity as well as a marked increase in beige fat. Microarray analysis of Rheb-/- T cells revealed a marked increase in expression of kallikrein 1-related peptidase b22 (Klk1b22). Overexpression of KLK1b22 in vitro enhanced insulin receptor signaling, and systemic overexpression of KLK1b22 in C57BL/6J mice also enhances glucose tolerance. Although KLK1B22 expression was markedly elevated in the T-Rheb-/- T cells, we never observed any expression in wild-type T cells. Interestingly, in querying the mouse Immunologic Genome Project, we found that Klk1b22 expression was also increased in wild-type 129S1/SVLMJ and C3HEJ mice. Indeed, both strains of mice demonstrate exceptionally improved glucose tolerance. This prompted us to employ CRISPR-mediated knockout of KLK1b22 in 129S1/SVLMJ mice, which in fact led to reduced glucose tolerance. Overall, our studies reveal (to our knowledge) a novel role for KLK1b22 in regulating systemic metabolism and demonstrate the ability of T cell-derived KLK1b22 to regulate systemic metabolism. Notably, however, further studies have revealed that this is a serendipitous finding unrelated to Rheb.


Asunto(s)
Calicreínas , Linfocitos T , Animales , Ratones , Masculino , Femenino , Ratones Endogámicos C57BL , Adipocitos Beige , Linfocitos T/metabolismo , Calicreínas/metabolismo , Glucemia/metabolismo , Resistencia a la Insulina
15.
Mol Microbiol ; 76(6): 1539-54, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20487265

RESUMEN

Myxococcus xanthus moves by gliding motility powered by Type IV pili (S-motility) and a second motility system, A-motility, whose mechanism remains elusive despite the identification of approximately 40 A-motility genes. In this study, we used biochemistry and cell biology analyses to identify multi-protein complexes associated with A-motility. Previously, we showed that the N-terminal domain of FrzCD, the receptor for the frizzy chemosensory pathway, interacts with two A-motility proteins, AglZ and AgmU. Here we characterized AgmU, a protein that localized to both the periplasm and cytoplasm. On firm surfaces, AgmU-mCherry colocalized with AglZ as distributed clusters that remained fixed with respect to the substratum as cells moved forward. Cluster formation was favoured by hard surfaces where A-motility is favoured. In contrast, AgmU-mCherry clusters were not observed on soft agar surfaces or when cells were in large groups, conditions that favour S-motility. Using glutathione-S-transferase affinity chromatography, AgmU was found to interact either directly or indirectly with multiple A-motility proteins including AglZ, AglT, AgmK, AgmX, AglW and CglB. These proteins, important for the correct localization of AgmU and AglZ, appear to be organized as a motility complex, spanning the cytoplasm, inner membrane and the periplasm. Identification of this complex may be important for uncovering the mechanism of A-motility.


Asunto(s)
Proteínas Bacterianas/fisiología , Locomoción , Myxococcus xanthus/fisiología , Proteínas Bacterianas/análisis , Citoplasma/química , Modelos Biológicos , Modelos Químicos , Myxococcus xanthus/química , Periplasma/química , Unión Proteica , Mapeo de Interacción de Proteínas
16.
Cell Rep ; 34(11): 108863, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33691089

RESUMEN

It is unclear why some SARS-CoV-2 patients readily resolve infection while others develop severe disease. By interrogating metabolic programs of immune cells in severe and recovered coronavirus disease 2019 (COVID-19) patients compared with other viral infections, we identify a unique population of T cells. These T cells express increased Voltage-Dependent Anion Channel 1 (VDAC1), accompanied by gene programs and functional characteristics linked to mitochondrial dysfunction and apoptosis. The percentage of these cells increases in elderly patients and correlates with lymphopenia. Importantly, T cell apoptosis is inhibited in vitro by targeting the oligomerization of VDAC1 or blocking caspase activity. We also observe an expansion of myeloid-derived suppressor cells with unique metabolic phenotypes specific to COVID-19, and their presence distinguishes severe from mild disease. Overall, the identification of these metabolic phenotypes provides insight into the dysfunctional immune response in acutely ill COVID-19 patients and provides a means to predict and track disease severity and/or design metabolic therapeutic regimens.


Asunto(s)
COVID-19/inmunología , COVID-19/metabolismo , Inmunidad/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis/inmunología , Caspasas/inmunología , Caspasas/metabolismo , Femenino , Humanos , Linfopenia/inmunología , Linfopenia/metabolismo , Masculino , Persona de Mediana Edad , Mitocondrias/inmunología , Mitocondrias/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Adulto Joven
17.
J Clin Invest ; 130(7): 3865-3884, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32324593

RESUMEN

Myeloid cells comprise a major component of the tumor microenvironment (TME) that promotes tumor growth and immune evasion. By employing a small-molecule inhibitor of glutamine metabolism, not only were we able to inhibit tumor growth, but we markedly inhibited the generation and recruitment of myeloid-derived suppressor cells (MDSCs). Targeting tumor glutamine metabolism led to a decrease in CSF3 and hence recruitment of MDSCs as well as immunogenic cell death, leading to an increase in inflammatory tumor-associated macrophages (TAMs). Alternatively, inhibiting glutamine metabolism of the MDSCs themselves led to activation-induced cell death and conversion of MDSCs to inflammatory macrophages. Surprisingly, blocking glutamine metabolism also inhibited IDO expression of both the tumor and myeloid-derived cells, leading to a marked decrease in kynurenine levels. This in turn inhibited the development of metastasis and further enhanced antitumor immunity. Indeed, targeting glutamine metabolism rendered checkpoint blockade-resistant tumors susceptible to immunotherapy. Overall, our studies define an intimate interplay between the unique metabolism of tumors and the metabolism of suppressive immune cells.


Asunto(s)
Inmunidad Celular , Macrófagos/inmunología , Células Supresoras de Origen Mieloide/inmunología , Neoplasias Experimentales/inmunología , Microambiente Tumoral/inmunología , Animales , Femenino , Glutamina/inmunología , Inmunoterapia , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Células Supresoras de Origen Mieloide/patología , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia
18.
medRxiv ; 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32935120

RESUMEN

It remains unclear why some patients infected with SARS-CoV-2 readily resolve infection while others develop severe disease. To address this question, we employed a novel assay to interrogate immune-metabolic programs of T cells and myeloid cells in severe and recovered COVID-19 patients. Using this approach, we identified a unique population of T cells expressing high H3K27me3 and the mitochondrial membrane protein voltage-dependent anion channel (VDAC), which were expanded in acutely ill COVID-19 patients and distinct from T cells found in patients infected with hepatitis c or influenza and in recovered COVID-19. Increased VDAC was associated with gene programs linked to mitochondrial dysfunction and apoptosis. High-resolution fluorescence and electron microscopy imaging of the cells revealed dysmorphic mitochondria and release of cytochrome c into the cytoplasm, indicative of apoptosis activation. The percentage of these cells was markedly increased in elderly patients and correlated with lymphopenia. Importantly, T cell apoptosis could be inhibited in vitro by targeting the oligomerization of VDAC or blocking caspase activity. In addition to these T cell findings, we also observed a robust population of Hexokinase II+ polymorphonuclear-myeloid derived suppressor cells (PMN-MDSC), exclusively found in the acutely ill COVID-19 patients and not the other viral diseases. Finally, we revealed a unique population of monocytic MDSC (M-MDSC) expressing high levels of carnitine palmitoyltransferase 1a (CPT1a) and VDAC. The metabolic phenotype of these cells was not only highly specific to COVID-19 patients but the presence of these cells was able to distinguish severe from mild disease. Overall, the identification of these novel metabolic phenotypes not only provides insight into the dysfunctional immune response in acutely ill COVID-19 patients but also provide a means to predict and track disease severity as well as an opportunity to design and evaluate novel metabolic therapeutic regimens.

19.
Science ; 366(6468): 1013-1021, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31699883

RESUMEN

The metabolic characteristics of tumors present considerable hurdles to immune cell function and cancer immunotherapy. Using a glutamine antagonist, we metabolically dismantled the immunosuppressive microenvironment of tumors. We demonstrate that glutamine blockade in tumor-bearing mice suppresses oxidative and glycolytic metabolism of cancer cells, leading to decreased hypoxia, acidosis, and nutrient depletion. By contrast, effector T cells responded to glutamine antagonism by markedly up-regulating oxidative metabolism and adopting a long-lived, highly activated phenotype. These divergent changes in cellular metabolism and programming form the basis for potent antitumor responses. Glutamine antagonism therefore exposes a previously undefined difference in metabolic plasticity between cancer cells and effector T cells that can be exploited as a "metabolic checkpoint" for tumor immunotherapy.


Asunto(s)
Compuestos Azo/farmacología , Caproatos/farmacología , Glutamina/metabolismo , Inmunoterapia Adoptiva , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/terapia , Escape del Tumor , Animales , Linfocitos T CD8-positivos/inmunología , Ciclo del Ácido Cítrico/efectos de los fármacos , Metabolismo Energético , Femenino , Glucosa/metabolismo , Glutamina/antagonistas & inhibidores , Memoria Inmunológica , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Microambiente Tumoral
20.
Cell Rep ; 20(10): 2439-2454, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28877476

RESUMEN

Tissue-resident macrophages play critical roles in sentinel and homeostatic functions as well as in promoting inflammation and immunity. It has become clear that the generation of these cells is highly dependent upon tissue-specific cues derived from the microenvironment that, in turn, regulate unique differentiation programs. Recently, a role for GATA6 has emerged in the differentiation programming of resident peritoneal macrophages. We identify a critical role for mTOR in integrating cues from the tissue microenvironment in regulating differentiation and metabolic reprogramming. Specifically, inhibition of mTORC2 leads to enhanced GATA6 expression in a FOXO1 dependent fashion. Functionally, inhibition of mTORC2 promotes peritoneal resident macrophage generation in the resolution phase during zymosan-induced peritonitis. Also, mTORC2-deficient peritoneal resident macrophages displayed increased functionality and metabolic reprogramming. Notably, mTORC2 activation distinguishes tissue-resident macrophage proliferation and differentiation from that of M2 macrophages. Overall, our data implicate a selective role for mTORC2 in the differentiation of tissue-resident macrophages.


Asunto(s)
Macrófagos Peritoneales/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Peritonitis/metabolismo , Animales , Femenino , Citometría de Flujo , Proteína Forkhead Box O1/metabolismo , Factor de Transcripción GATA6/metabolismo , Immunoblotting , Macrófagos/metabolismo , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Fagocitosis/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Zimosan/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA