Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Am Chem Soc ; 144(13): 5718-5722, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35319872

RESUMEN

A supramolecular trilayer nanographene complex consisting of a newly synthesized D3h-symmetric C54-nanographene trisimide (NTI 1) and two hexabenzocoronenes (HBC) has been obtained by self-assembly. This 1:2 complex is structurally well-defined according to UV/vis and single crystal X-ray studies and exhibits high thermodynamic stability even in polar halogenated solvents. Complexation of NTI 1 by two HBC molecules protects the NTI 1 π-surface efficiently from oxygen quenching, thereby leading to a sequestration-induced fluorescence enhancement under ambient conditions.


Asunto(s)
Fluorescencia , Solventes/química , Termodinámica
2.
Angew Chem Int Ed Engl ; 61(11): e202116603, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35020259

RESUMEN

Conventional square-planar platinum complexes typically form one-dimensional assemblies as a result of unidirectional metallophilic and/or π⋅⋅⋅π intermolecular interactions. Organoplatinum(II) complexes with a cruciform shape are presented herein to construct two-dimensional (2D) microcrystals with full-color and white phosphorescence. These 2D crystals show unique monocomponent π⋅⋅⋅π stacking, from either the cyclometalating or noncyclometalating ligand, and the bicomponent alternate π⋅⋅⋅π stacking from both ligands along different facet directions. Anisotropic tri-directional waveguiding is further implemented on a single hexagonal microcrystal. These results demonstrate the great capability of the organoplatinum(II) cruciform as a general platform to fabricate 2D phosphorescent micro-/nanocrystals for advanced photonic applications.

3.
Inorg Chem ; 59(16): 11316-11328, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32799462

RESUMEN

Molecular packing has an important effect on the photophysical properties of crystalline materials. We demonstrate in this work the modulation of molecular packing and emission properties of microcrystals by minor molecular structural variations. Four platinum ß-diketonate complexes, with two fluoro substituents (1) or one fluoro atom substituted on different positions of the auxiliary phenylpyridine ligand (2-4) have been synthesized. These complexes were used to prepare one-dimensional microcrystals with well-defined shapes and uniform sizes. Although 1-4 display similar emission spectra in the solution state, the corresponding microcrystals display different emission colors from green to yellow and orange. In addition, different temperature-responsive (80-298 K) emission spectral changes have been observed from these microcrystals, including the intensity variation of the locally excited (LE) emission without obvious wavelength shifts, competition between the LE and metal-metal-to-ligand charge-transfer emissions, and the sole wavelength shift of the π-π excimer emissions. These differences in emission properties are rationalized by different molecular packings of these materials, as revealed by single-crystal X-ray analyses.

4.
J Am Chem Soc ; 141(15): 6157-6161, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30945852

RESUMEN

Polymorphism and anisotropy are fundamental phenomena of crystalline materials. However, the structure-dependent photoluminescent (PL) anisotropy in polymorphic organic crystals has remained unexplored. Herein, two polymorphic nanocrystals, green-emitting nanorods (PtD-g) and yellow-emitting nanoplates (PtD-y), were obtained from a platinum(II)-ß-diketonate complex. The PtD-y crystals display remarkable PL anisotropy with an anisotropy ratio of up to 0.87 whereas the emission of the PtD-g crystals is nearly unpolarized. The polarization properties are rationalized on the different molecular packing of these crystals. By light-harvesting energy transfer, the PtD-y crystals are successfully used to amplify the emission polarization of a red-emitting platinum acceptor (PtA) doped into the donor crystalline matrix, which is otherwise weakly polarized as pure crystals.

5.
J Am Chem Soc ; 140(12): 4269-4278, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29522322

RESUMEN

Real-time visualization of assembly processes and sophisticated signal processing at the nanoscale are two challenging topics in photonic nanomaterials. Here, high-quality light-harvesting crystalline nanorods were developed by the coassembly of two polypyridyl Ir(III) and Ru(II) metallophosphors, behaving as the antenna chromophore and energy acceptor, respectively. By using a one-pot or stepwise growth condition, homogeneous and multiblock heterojunction nanorods were prepared, respectively. These nanostructures display multicolor phosphorescence from green to red due to the efficient triplet energy transfer and light-harvesting capability at low acceptor doping ratios. Heterojunction nanorods show gradient emission-color switches during different growth stages, in which the real-time stepwise assembly can be vividly visualized using fluorescence microscopy techniques. Triplet excitons were successfully manipulated in both homogeneous and heterojunction nanorods to realize waveguided green, orange, and red emissions and advanced photonic signal logics and encoding/decoding on single multiblock heterojunction nanorod.

6.
Angew Chem Int Ed Engl ; 57(26): 7820-7825, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29665184

RESUMEN

Thermal-responsive phosphorescent nanotubes have been fabricated from the co-assembly of two neutral iridium complexes, which behave as the antenna chromophores and energy acceptors, respectively, in these highly ordered crystalline superstructures. By tuning the acceptor doping ratio in a range of 0 to 0.5 %, these tubes display color-tunable phosphorescence from green to red at room temperature, and it is attributed to the highly efficient light-harvesting and energy transfer within these materials. For the same reason, the acceptor emission in the nanotubes is amplified more than 800 times with respect to its pure non-emissive solid sample. The doped tubes show reversible thermal-responsiveness, in which the energy transfer was completely suppressed at 77 K and reactivated at room temperature. These processes were characterized by the in situ emission color (green, orange, and red) and spectral changes and lifetime measurements of isolated nanotubes. The temperature-controlled exciton dynamics are responsible for the luminescent thermochromism in these crystalline materials.

7.
Inorg Chem ; 55(24): 13007-13013, 2016 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-27989151

RESUMEN

A donor-acceptor-structured diruthenium complex, 1(PF6)4, that contains an electron-deficient bridging ligand and electron-rich distal diarylamines modified with long aliphatic chains has been synthesized. By varying the solvent environments and assembly conditions, we obtained three different self-assembled nanostructures of 1(PF6)4, including zero-dimensional nanospheres, one-dimensional nanofibers, and thin films with interconnected nanowire networks. These structures were investigated by scanning electron microscopy, transmission electron microscopy, dynamic light scattering, X-ray diffraction, and atomic force microscopy (AFM) analysis. Conductive AFM analysis shows that the nanowire networks exhibit a high conductivity of 0.023 S/cm and an enhanced photoconductivity of 0.59 S/cm under visible light irradiation.

8.
Inorg Chem ; 54(16): 8136-47, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26237331

RESUMEN

Five osmium complexes with redox-active amine substituents, [Os(ttpy)(Ntpy)](PF6)2 (1(PF6)2), [Os(Ntpy)2](PF6)2 (2(PF6)2), [Os(ttpy)(NPhtpy)](PF6)2 (3(PF6)2), [Os(Ntpy)(NPhtpy)](PF6)2 (4(PF6)2), and [Os(NPhtpy)2](PF6)2 (5(PF6)2), have been prepared, where ttpy is 4'-tolyl-2,2':6',2″-terpyridine, Ntpy is 4'-(di-p-anisylamino)-2,2':6',2″-terpyridine, and NPhtpy is 4'-(di-p-anisylaminophen-4-yl)-2,2':6',2″-terpyridine. X-ray crystallographic data of 2(PF6)2 and 4(PF6)2 are presented. These complexes show rich visible absorptions attributed to the singlet metal-to-ligand charge-transfer ((1)MLCT), triplet MLCT, and intraligand charge-transfer transitions. Complexes 3(PF6)2 and 5(PF6)2 show weak emissions around 720 nm at room temperature. All complexes show stepwise oxidations of the osmium ion and the amine segment. However, the redox potentials and the order of the Os(III/II) and N(•+/0) processes vary significantly, depending on the electronic nature of the amine substituents. In the singly oxidized state, either Os(II) → N(•+) MLCT or N → Os(III) ligand-to-metal charge-transfer transitions in the near-infrared region have been observed. For complexes 2(PF6)2, 4(PF6)2, and 5(PF6)2 with two amine substituents, no evidence has been observed for the presence of osmium-mediated amine-amine electronic coupling. Density functional theory (DFT) and time-dependent DFT calculations have been performed to complement these experimental results. The one-electron-oxidized forms 3(3+) and 5(3+) show distinct electron paramagnetic resonance (EPR) signals in CH3CN at room temperature. However, complexes 1(3+), 2(3+), and 4(3+) are EPR silent under similar conditions. In addition, a comparison study has been made between these osmium complexes and the previously reported ruthenium analogues.

9.
J Agric Food Chem ; 71(21): 8038-8049, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37196215

RESUMEN

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an essential regulatory target of antioxidants, but the lack of Nrf2 active site information has hindered discovery of new Nrf2 agonists from food-derived compounds by large-scale virtual screening. Two deep-learning models were separately trained to screen for Nrf2-agonists and safety. The trained models screened potentially active chemicals from approximately 70,000 dietary compounds within 5 min. Of the 169 potential Nrf2 agonists identified via deep-learning screening, 137 had not been reported before. Six compounds selected from the new Nrf2 agonists significantly increased (p < 0.05) the activity of Nrf2 on carbon tetrachloride (CCl4)-intoxicated HepG2 cells (nicotiflorin (99.44 ± 18.5%), artemetin (97.91 ± 8.22%), daidzin (87.73 ± 3.77%), linonin (74.27 ± 5.73%), sinensetin (72.74 ± 10.41%), and tectoridin (77.78 ± 4.80%)), and their safety were demonstrated by an MTT assay. The safety and Nrf2 agonistic activity of nicotiflorin, artemetin, and daidzin were also reconfirm by a single-dose acute oral toxicity study and CCl4-intoxicated rat assay.


Asunto(s)
Aprendizaje Profundo , Factor 2 Relacionado con NF-E2 , Ratas , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/química , Dieta , Tetracloruro de Carbono/metabolismo , Estrés Oxidativo , Hígado/metabolismo
10.
Adv Mater ; 34(51): e2207331, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36210750

RESUMEN

Heavy-atom-containing clusters, nanocrystals, and other semiconductors can sensitize the triplet states of their surface-bonded chromophores, but the energy loss, such as nonradiative deactivation, often prevents the synergistic light emission in their solid-state coassemblies. Cocrystallization allows new combinations of molecules with complementary properties for achieving functionalities not available in single components. Here, the cocrystal formation that employs platinum(II) acetylacetonate (Pt(acac)2 ) as a triplet sensitizer and electron-deficient 1,4,5,8-naphthalene diimides (NDIs) as organic phosphors is reported. The hybrid cocrystals exhibit room-temperature phosphorescence confined in the low-lying, long-lived triplet state of NDIs with photoluminescence (PL) quantum yield (ΦPL ) exceeding 25% and a phosphorescence lifetime (τPh ) of 156 µs. This remarkable PL property benefits from the noncovalent electronic and spin-orbital coupling between the constituents.

11.
Adv Mater ; 33(4): e2006368, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33325577

RESUMEN

Electrical-to-optical signal conversion is widely employed in information technology and is implemented using on-chip optical modulators. State-of-the-art modulator technologies are incompatible with silicon manufacturing techniques: inorganic nonlinear crystals such as LiNbO3 are integrated with silicon photonic chips only using complex approaches, and hybrid silicon-LiNbO3 optical modulators show either low bandwidth or high operating voltage. Organic perovskites are solution-processed materials readily integrated with silicon photonics; and organic molecules embedded within the perovskite scaffold allow in principle for high polarizability. However, it is found that the large molecules required for high polarizability also require an increase of the size of the perovskite cavity: specifically, using the highly polarizable DR2+ (R = H, F, Cl) in the A site necessitates the exploration of new X-site options. Only by introducing BF4 - as the X-site molecule is it possible to synthesize (DCl)(NH4 )(BF4 )3 , a material exhibiting a linear EO coefficient of 20 pm V-1 , which is 10 times higher than that of metal halide perovskites and is a 1.5 fold enhancement compared to reported organic perovskites. The EO response of the organic perovskite approaches that of LiNbO3 (reff  ≈ 30 pm V-1 ) and highlights the promise of rationally designed organic perovskites for use in efficient EO modulators.

12.
ACS Appl Mater Interfaces ; 13(16): 19042-19047, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33856188

RESUMEN

Electro-optic (EO) modulation is of interest to impart information onto an optical carrier. Inorganic crystals-most notably LiNbO3 and BaTiO3-exhibit EO modulation and good stability, but are difficult to integrate with silicon photonic technology. Solution-processed organic EO materials are readily integrated but suffer from thermal degradation at the temperatures required in operating conditions for accelerated reliability studies. Hybrid organic-inorganic metal halide perovskites have the potential to overcome these limitations; however, these have so far relied on heavy metals such as lead and cadmium. Here, we report linear EO modulation using metal-free perovskites, which maintain the crystalline features of the inorganic EO materials and incorporate the flexible functionality of organic EO chromophores. We find that, by introducing a deficiency of cations, we reduce the symmetry in the perovskite crystal and produce thereby an increased EO response. The best-engineered perovskites reported herein showcase an EO coefficient of 14 pm V-1 at a modulation frequency of 80 kHz, an order of magnitude higher than in the nondefective materials. We observe split peaks in the X-ray diffraction and neutron diffraction patterns of the defective sample, indicating that the crystalline structure has been distorted and the symmetry reduced. Density functional theory (DFT) studies link this decreased symmetry to NH4+ deficiencies. This demonstration of EO from metal-free perovskites highlights their potential in next-generation optical information transmission.

13.
Nat Commun ; 12(1): 6089, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667176

RESUMEN

Metal borides/borates have been considered promising as oxygen evolution reaction catalysts; however, to date, there is a dearth of evidence of long-term stability at practical current densities. Here we report a phase composition modulation approach to fabricate effective borides/borates-based catalysts. We find that metal borides in-situ formed metal borates are responsible for their high activity. This knowledge prompts us to synthesize NiFe-Boride, and to use it as a templating precursor to form an active NiFe-Borate catalyst. This boride-derived oxide catalyzes oxygen evolution with an overpotential of 167 mV at 10 mA/cm2 in 1 M KOH electrolyte and requires a record-low overpotential of 460 mV to maintain water splitting performance for over 400 h at current density of 1 A/cm2. We couple the catalyst with CO reduction in an alkaline membrane electrode assembly electrolyser, reporting stable C2H4 electrosynthesis at current density 200 mA/cm2 for over 80 h.

14.
Neurosci Bull ; 36(8): 919-931, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32430873

RESUMEN

Cerebellar malfunction can lead to sleep disturbance such as excessive daytime sleepiness, suggesting that the cerebellum may be involved in regulating sleep and/or wakefulness. However, understanding the features of cerebellar regulation in sleep and wakefulness states requires a detailed characterization of neuronal activity within this area. By performing multiple-unit recordings in mice, we showed that Purkinje cells (PCs) in the cerebellar cortex exhibited increased firing activity prior to the transition from sleep to wakefulness. Notably, the increased PC activity resulted from the inputs of low-frequency non-PC units in the cerebellar cortex. Moreover, the increased PC activity was accompanied by decreased activity in neurons of the deep cerebellar nuclei at the non-rapid eye-movement sleep-wakefulness transition. Our results provide in vivo electrophysiological evidence that the cerebellum has the potential to actively regulate the sleep-wakefulness transition.


Asunto(s)
Cerebelo/fisiología , Neuronas/fisiología , Células de Purkinje/fisiología , Sueño , Vigilia , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
15.
Nat Commun ; 11(1): 3674, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699223

RESUMEN

Metal halide perovskites have emerged as promising candidates for solution-processed blue light-emitting diodes (LEDs). However, halide phase segregation - and the resultant spectral shift - at LED operating voltages hinders their application. Here we report true-blue LEDs employing quasi-two-dimensional cesium lead bromide with a narrow size distribution of quantum wells, achieved through the incorporation of a chelating additive. Ultrafast transient absorption spectroscopy measurements reveal that the chelating agent helps to control the quantum well thickness distribution. Density functional theory calculations show that the chelating molecule destabilizes the lead species on the quantum well surface and that this in turn suppresses the growth of thicker quantum wells. Treatment with γ-aminobutyric acid passivates electronic traps and enables films to withstand 100 °C for 24 h without changes to their emission spectrum. LEDs incorporating γ-aminobutyric acid-treated perovskites exhibit blue emission with Commission Internationale de l'Éclairage coordinates of (0.12, 0.14) at an external quantum efficiency of 6.3%.

16.
Behav Brain Res ; 359: 457-466, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30468789

RESUMEN

Behavioral studies have demonstrated that extinguished conditioned eyeblink responses (CR) can spontaneously recover after extinction. However, the neural mechanisms underlying this process are still unclear. We have shown that spontaneous cerebellar theta activity was predictive of subsequent CR extinction. Here, we sought to further evaluate the association between spontaneous recovery and cerebellar theta activity in behaving guinea pigs. It was found that trace conditioning training significantly diminished the degree of spontaneous recovery during extinction sessions as compared to delay training. Moreover, by recording local field potential in the cerebellum of guinea pigs undergoing an eyeblink conditioning extinction task, we found that spontaneous recovery of delay-paradigm CRs was associated with transiently decreased CS-evoked theta activity in the cerebellum. These findings suggest that decreased CS-evoked cerebellar theta activity may contribute to the neural process that is important for the spontaneous recovery of extinguished motor memory. Future studies are needed to clarify the neural mechanism underlying changed cerebellar theta activity during altered behavioral contingencies.


Asunto(s)
Cerebelo/fisiología , Condicionamiento Palpebral/fisiología , Ritmo Teta/fisiología , Animales , Electrocorticografía , Extinción Psicológica/fisiología , Cobayas , Masculino , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA