Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Immunol ; 192(2): 771-81, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24337748

RESUMEN

GTPases act as important switches in many signaling events in cells. Although small and heterotrimeric G proteins are subjects of intensive studies, little is known about the large IFN-inducible GTPases. In this article, we show that the IFN-γ-inducible guanylate binding protein 1 (GBP-1) is a regulator of T cell activation. Silencing of GBP-1 leads to enhanced activation of early T cell Ag receptor/CD3 signaling molecules, including Lck, that is translated to higher IL-2 production. Mass spectrometry analyses showed that regulatory cytoskeletal proteins, like plastin-2 that bundles actin fibers and spectrin ß-chain, brain 1 that links the plasma membrane to the actin cytoskeleton, are binding partners of GBP-1. The spectrin cytoskeleton influences cell spreading and surface expression of TCR/CD3 and the leukocyte phosphatase CD45. We found higher cell spreading and enhanced surface expression of TCR/CD3 and CD45 in GBP-1 silenced T cells that explain their enhanced TCR/CD3 signaling. We conclude that GBP-1 is a downstream processor of IFN-γ via which T cells regulate cytoskeleton-dependent cell functions.


Asunto(s)
Citoesqueleto/metabolismo , Proteínas de Unión al GTP/metabolismo , Complejo Receptor-CD3 del Antígeno de Linfocito T/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Complejo CD3/genética , Complejo CD3/metabolismo , Línea Celular , Línea Celular Tumoral , Citoesqueleto/genética , Citosol/metabolismo , Proteínas de Unión al GTP/genética , Células HEK293 , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Células Jurkat , Antígenos Comunes de Leucocito , Leucocitos/metabolismo , Activación de Linfocitos/genética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Complejo Receptor-CD3 del Antígeno de Linfocito T/genética , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal/genética , Linfocitos T/metabolismo , Regulación hacia Arriba/genética
2.
Cytometry A ; 83(9): 847-54, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23125142

RESUMEN

Quantification of protein interactions in living cells is of key relevance for understanding cellular signaling. With current techniques, however, it is difficult to determine binding affinities and stoichiometries of protein complexes in the plasma membrane. We introduce here protein micropatterning as a convenient and versatile method for such investigations. Cells are grown on surfaces containing micropatterns of capture antibody to a bait protein, so that the bait gets rearranged in the live cell plasma membrane. Upon interaction with the bait, the fluorescent prey follows the micropatterns, which can be readout with fluorescence microscopy. In this study, we addressed the interaction between Lck and CD4, two central proteins in early T-cell signaling. Binding curves were recorded using the natural fluctuations in the Lck expression levels. Surprisingly, the binding was not saturable up to the highest Lck expression levels: on average, a single CD4 molecule recruited more than nine Lck molecules. We discuss the data in view of protein- and lipid-mediated interactions.


Asunto(s)
Antígenos CD4/metabolismo , Membrana Celular/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Proteínas Bacterianas/genética , Línea Celular Tumoral , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Microscopía Fluorescente , Unión Proteica , Mapeo de Interacción de Proteínas
3.
Anal Bioanal Chem ; 397(8): 3339-47, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20574782

RESUMEN

We have recently devised a method to quantify interactions between a membrane protein ("bait") and a fluorophore-labeled protein ("prey") directly in the live-cell plasma membrane (Schwarzenbacher et al. Nature Methods 5:1053-1060 2008). The idea is to seed cells on surfaces containing micro-patterned antibodies against the exoplasmic domain of the bait, and monitor the co-patterning of the fluorescent prey via fluorescence microscopy. Here, we characterized the time course of bait and prey micropattern formation upon seeding the cells onto the micro-biochip. Patterns were formed immediately after contact of the cells with the surface. Cells were able to migrate over the chip surface without affecting the micropattern contrast, which remained constant over hours. On single cells, bait contrast may be subject to fluctuations, indicating that the bait can be released from and recaptured on the micropatterns. We conclude that interaction studies can be performed at any time-point ranging from 5 min to several hours post seeding. Monitoring interactions with time opens up the possibility for new assays, which are briefly sketched in the discussion section.


Asunto(s)
Membrana Celular/metabolismo , Células/metabolismo , Proteínas de la Membrana/metabolismo , Línea Celular , Membrana Celular/química , Células/química , Humanos , Cinética , Proteínas de la Membrana/química , Análisis por Matrices de Proteínas , Unión Proteica
4.
Cardiovasc Res ; 94(1): 125-35, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22287577

RESUMEN

AIMS: Vascular endothelial growth factor (VEGF)-initiated angiogenesis requires coordinated proteolytic degradation of extracellular matrix provided by the urokinase plasminogen activator/urokinase receptor (uPA/uPAR) system and regulation of cell migration provided by integrin-matrix interaction. In this study, we investigated the mechanisms underlying the uPAR-dependent modulation of VEGF-induced endothelial migration. METHODS AND RESULTS: We used flow cytometry to quantify integrins at the cell surface. Stimulation of human and murine endothelial cells with VEGF resulted in internalization of α5ß1-integrins. Micropatterning and immunocytochemistry revealed co-clustering of uPAR and α5ß1-integrins and retrieval via clathrin-coated vesicles. It was also contingent on receptors of the low-density lipoprotein receptor (LDL-R) family. VEGF-induced integrin redistribution was inhibited by elimination of uPAR from the endothelial cell surface or by inhibitory peptides that block the uPAR-integrin interaction. Under these conditions, the migratory response of endothelial cells upon VEGF stimulation was impaired both in vitro and in vivo. CONCLUSIONS: The observations indicate that uPAR is an essential component of the network through which VEGF controls endothelial cell migration. uPAR is a bottleneck through which the VEGF-induced signal must be funnelled for both focused proteolytic activity at the leading edge and for redistribution of integrins.


Asunto(s)
Movimiento Celular , Células Endoteliales/metabolismo , Integrina alfa5beta1/metabolismo , Neovascularización Fisiológica , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Cultivadas , Vesículas Cubiertas por Clatrina/metabolismo , Endocitosis , Citometría de Flujo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Transporte de Proteínas , Interferencia de ARN , Receptores de LDL/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/deficiencia , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Transfección
5.
J Vis Exp ; (37)2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20305612

RESUMEN

Unraveling the interaction network of molecules in-vivo is key to understanding the mechanisms that regulate cell function and metabolism. A multitude of methodological options for addressing molecular interactions in cells have been developed, but most of these methods suffer from being rather indirect and therefore hardly quantitative. On the contrary, a few high-end quantitative approaches were introduced, which however are difficult to extend to high throughput. To combine high throughput capabilities with the possibility to extract quantitative information, we recently developed a new concept for identifying protein-protein interactions (Schwarzenbacher et al., 2008). Here, we describe a detailed protocol for the design and the construction of this system which allows for analyzing interactions between a fluorophore-labeled protein ("prey") and a membrane protein ("bait") in-vivo. Cells are plated on micropatterned surfaces functionalized with antibodies against the bait exoplasmic domain. Bait-prey interactions are assayed via the redistribution of the fluorescent prey. The method is characterized by high sensitivity down to the level of single molecules, the capability to detect weak interactions, and high throughput capability, making it applicable as screening tool.


Asunto(s)
Técnicas Citológicas/métodos , Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo , Anticuerpos/química , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Propiedades de Superficie
6.
Methods Enzymol ; 472: 133-51, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20580963

RESUMEN

Our understanding of complex biological systems is based on high-quality proteomics tools for the parallelized detection and quantification of protein interactions. Current screening platforms, however, rely on measuring protein interactions in rather artificial systems, rendering the results difficult to confer on the in vivo situation. We describe here a detailed protocol for the design and the construction of a system to detect and quantify interactions between a fluorophore-labeled protein ("prey") and a membrane protein ("bait") in living cells. Cells are plated on micropatterned surfaces functionalized with antibodies to the bait exoplasmic domain. Bait-prey interactions are assayed via the redistribution of the fluorescent prey. The method is characterized by high sensitivity down to the level of single molecules, the capability to detect weak interactions, and high throughput, making it applicable as a screening tool. The proof-of-concept is demonstrated for the interaction between CD4, a major coreceptor in T-cell signaling, and Lck, a protein tyrosine kinase essential for early T-cell signaling.


Asunto(s)
Técnicas de Cultivo de Célula , Membrana Celular/metabolismo , Mapeo de Interacción de Proteínas , Animales , Antígenos CD4/metabolismo , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Membrana Celular/química , Células Cultivadas , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Mapeo de Interacción de Proteínas/instrumentación , Mapeo de Interacción de Proteínas/métodos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA