Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Lett ; 48(1): 81-84, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563374

RESUMEN

Bolometers based on graphene have demonstrated outstanding performance with high sensitivity and short response time. In situ adjustment of bolometers is very important in various applications, but it is still difficult to implement in many systems. Here we propose a gate-tunable bolometer based on two strongly coupled graphene nanomechanical resonators. Both resonators are exposed to the same light field, and we can measure the properties of one bolometer by directly tracking the resonance frequency shifts, and indirectly measure the other bolometer through mechanical coupling. We find that the sensitivity and the response bandwidth of both bolometers can be independently adjusted by tuning the corresponding gate voltages. Moreover, the properties of the indirectly measured bolometer show a dependence on the coupling between the two resonators, with other parameters being fixed. Our method has the potential to optimize the design of large-scale bolometer arrays, and open new horizons in infrared/terahertz astronomy and communication systems.

2.
J Phys Condens Matter ; 34(37)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35779515

RESUMEN

As an inherent property of the device itself, nonlinearity in micro-/nano- electromechanical resonators is difficult to eliminate, and it has shown a wide range of applications in basic research, sensing and other fields. While many application scenarios require tunability of the nonlinearity, inherent nonlinearity of a mechanical resonator is difficult to be changed. Here, we report the experimental observation of a Joule heating induced tuning effect on the nonlinearity of graphene mechanical resonators. We fabricated multiple graphene mechanical resonators and detected their resonant properties by an optical interference method. The mechanical vibration of the resonators will enter from the linear to the nonlinear intervals if we enhance the external driving power to a certain value. We found that at a fixed drive power, the nonlinearity of a mechanical resonator can be tuned by applying a dc bias current on the resonator itself. The tuning mechanism could be explained by the nonlinear amplitude-frequency dependence theory. Our results may provide a research platform for the study of mechanical nonlinearity by using atomic-thin layer materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA