Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37571590

RESUMEN

To solve the problem of anomaly detection in annular metal turning surfaces, this paper develops an anomaly detection algorithm based on a priori information and a multi-scale self-referencing template by combining the imaging characteristics of annular workpieces. First, the annular metal turning surface is unfolded into a rectangular expanded image using bilinear interpolation to facilitate subsequent algorithm development. Second, the grayscale information from the positive samples is used to obtain the a priori information, and a multi-scale self-referencing template method is used to obtain its own multi-scale information. Then, the phase error and large-size anomaly interference problems of the self-referencing method are overcome by combining the a priori information with its own information, and an accurate response to anomalous regions of various sizes is realized. Finally, the segmentation completeness of the anomalous region is improved by utilizing the region growing method. The experimental results show that the proposed method achieves a mean pixel AUROC of 0.977, and the mean M_IOU of segmentation reaches 0.788. In terms of efficiency, this method is also much more efficient than the commonly used anomaly detection algorithms. The proposed method can achieve rapid and accurate detection of defects in annular metal turning surfaces and has good industrial application value.

2.
Sensors (Basel) ; 22(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36080874

RESUMEN

To address the problem of low prediction accuracy of precipitation time series data, an improved overall mean empirical modal decomposition-prediction-reconstruction model (MDPRM) is constructed in this paper. First, the non-stationary precipitation time series are decomposed into multiple decomposition terms by the improved overall mean empirical modal decomposition (MEEMD). Then, a particle swarm optimization support vector machine (PSO-SVM) and convolutional neural network (CNN) and recurrent neural network (RNN) models are used to make predictions according to the characteristics of different decomposition terms. Finally, the prediction results of each decomposition term are superimposed and reconstructed to form the final prediction results. In addition, the application is carried out with the summer precipitation in the Wujiang River basin of Guizhou Province from 1961 to 2018, using the first 38 years of data to train MDPRM and the last 20 years of data to test MDPRM, and comparing with a feedback neural network (BP), a support vector machine (SVM), a particle swarm optimization support vector machine (PSO-SVM), a convolutional neural network (CNN), and a recurrent neural network (RNN), etc. The results show that the mean relative error (MAPE) of the proposed MDPRM is reduced from 0.31 to 0.09, the root mean square error (RMSE) is reduced from 0.56 to 0.30, and the consistency index (α) is significantly improved from 0.33 to 0.86, which has a higher prediction accuracy. Finally, the trained MDPRM predicts the average summer precipitation in the Wujiang River basin from 2019 to 2028 to be 466.42 mm, the minimum precipitation in 2020 to be 440.94 mm, and the maximum precipitation in 2024 to be 497.94 mm. Based on the prediction results, the agricultural drought level is evaluated using the Z index, which indicates that the summer is normal in the 10-year period. The study provides technical support for the effective guidance of regional water resources' allocation and scheduling and drought mitigation.


Asunto(s)
Redes Neurales de la Computación , Máquina de Vectores de Soporte , Ríos , Factores de Tiempo
3.
Sensors (Basel) ; 22(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35898019

RESUMEN

In this paper, we present a nutrient solution control system, designing a nutrient solution electrical conductivity (EC) sensing system composed of multiple long-range radio (LoRa) slave nodes, narrow-band Internet of Things (NB-IoT) master nodes, and a host computer, building a nutrient solution EC control model and using the particle swarm optimization (PSO) algorithm to optimize the initial weights of a back-propagation neural network (BPNN). In addition, the optimized best weights are put into the BPNN to adjust the proportional-integral-derivative (PID) control parameters Kp, Ki, and Kd so that the system performance index can be optimized. Under the same initial conditions, we input EC = 2 mS/cm and use the particle swarm optimization BP neural network PID (PSO-BPNN-PID) to control the EC target value of the nutrient solution. The optimized scale factors were Kp = 81, Ki = 0.095, and Kd = 0.044; the steady state time was about 43 s, the overshoot was about 0.14%, and the EC value was stable at 1.9997 mS/cm-2.0027 mS/cm. Compared with the BP neural network PID (BPNN-PID) and the traditional PID control approach, the results show that PSO-BPNN-PID had a faster response speed and higher accuracy. Furthermore, we input 1 mS/cm, 1.5 mS/cm, 2 mS/cm, and 2.5 mS/cm, respectively, and simulated and verified the PSO-BPNN-PID system model. The results showed that the fluctuation range of EC was 0.003 mS/cm~0.119 mS/cm, the steady-state time was 40 s~60 s, and the overshoot was 0.3%~0.14%, which can meet the requirements of the rapid and accurate integration of water and fertilizer in agricultural production.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Conductividad Eléctrica , Nutrientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA