RESUMEN
BACKGROUND: Ketone bodies (KBs) are an alternative energy supply for brain functions when glucose is limited. The most abundant ketone metabolite, 3-ß-hydroxybutyrate (BOHBUT), has been suggested to prevent or delay cognitive impairment, but the evidence remains unclear. We triangulated observational and Mendelian randomization (MR) studies to investigate the association and causation between KBs and cognitive function. METHODS: In observational analyses of 5506 participants aged ≥ 45 years from the Whitehall II study, we used multiple linear regression to investigate the associations between categorized KBs and cognitive function scores. Two-sample MR was carried out using summary statistics from an in-house KBs meta-analysis between the University College London-London School of Hygiene and Tropical Medicine-Edinburgh-Bristol (UCLEB) Consortium and Kettunen et al. (N = 45,031), and publicly available summary statistics of cognitive performance and Alzheimer's disease (AD) from the Social Science Genetic Association Consortium (N = 257,841), and the International Genomics of Alzheimer's Project (N = 54,162), respectively. Both strong (P < 5 × 10-8) and suggestive (P < 1 × 10-5) sets of instrumental variables for BOHBUT were applied. Finally, we performed cis-MR on OXCT1, a well-known gene for KB catabolism. RESULTS: BOHBUT was positively associated with general cognitive function (ß = 0.26, P = 9.74 × 10-3). In MR analyses, we observed a protective effect of BOHBUT on cognitive performance (inverse variance weighted: ßIVW = 7.89 × 10-2, PIVW = 1.03 × 10-2; weighted median: ßW-Median = 8.65 × 10-2, PW-Median = 9.60 × 10-3) and a protective effect on AD (ßIVW = - 0.31, odds ratio: OR = 0.74, PIVW = 3.06 × 10-2). Cis-MR showed little evidence of therapeutic modulation of OXCT1 on cognitive impairment. CONCLUSIONS: Triangulation of evidence suggests that BOHBUT has a beneficial effect on cognitive performance. Our findings raise the hypothesis that increased BOHBUT may improve general cognitive functions, delaying cognitive impairment and reducing the risk of AD.
Asunto(s)
Enfermedad de Alzheimer , Cuerpos Cetónicos , Humanos , Ácido 3-Hidroxibutírico , Enfermedad de Alzheimer/genética , Cognición , Cetonas , Análisis de la Aleatorización Mendeliana , Persona de Mediana EdadRESUMEN
The noncontagious immune-mediated skin disease known as psoriasis is regarded as a chronic skin condition with a 0.09-11.4% global prevalence. The main obstacle to the eradication of the disease continues to be insufficient treatment options. Sericin, a natural biopolymer from Bombyx mori cocoons, can improve skin conditions via its immunomodulatory effect. Many external therapeutic methods are currently used to treat psoriasis, but sericin-based hydrogel is not yet used to treat plaques of eczema. Through the use of an imiquimod rat model, this study sought to identify the physical and chemical characteristics of a silk sericin-based poly(vinyl) alcohol (SS/PVA) hydrogel and assess both its therapeutic and toxic effects on psoriasis. The cytokines, chemokines, and genes involved in the pathogenesis of psoriasis were investigated, focusing on the immuno-pathological relationships. We discovered that the SS/PVA had a stable fabrication and proper release. Additionally, the anti-inflammatory, antioxidant, and anti-apoptotic properties of SS/PVA reduced the severity of psoriasis in both gross and microscopic skin lesions. This was demonstrated by a decrease in the epidermal histopathology score, upregulation of nuclear factor erythroid 2-related factor 2 and interleukin (IL)-10, and a decrease in the expression of tumor necrosis factor (TNF)-α and IL-20. Moreover, the genes S100a7a and S100a14 were downregulated. Additionally, in rats given the SS/PVA treatment, blood urea nitrogen, creatinine, and serum glutamic oxaloacetic transaminase levels were within normal limits. Our findings indicate that SS/PVA is safe and may be potentiated to treat psoriasis in a variety of forms and locations of plaque because of its physical, chemical, and biological characteristics.
Asunto(s)
Psoriasis , Sericinas , Ratas , Animales , Sericinas/farmacología , Sericinas/uso terapéutico , Sericinas/química , Alcohol Polivinílico/química , Psoriasis/tratamiento farmacológico , Hidrogeles , VendajesRESUMEN
Knee osteoarthritis is a chronic joint disease mainly characterized by cartilage degeneration. The treatment is challenging due to the lack of blood vessels and nerve supplies in cartilaginous tissue, causing a prominent limitation of regenerative capacity. Hence, we investigated the cellular promotional and anti-inflammatory effects of sericin, Bombyx mori-derived protein, on three-dimensional chondrogenic ATDC5 cell models. The results revealed that a high concentration of sericin promoted chondrogenic proliferation and differentiation and enhanced matrix production through the increment of glycosaminoglycans, COL2A1, COL X, and ALP expressions. SOX-9 and COL2A1 gene expressions were notably elevated in sericin treatment. The proteomic analysis demonstrated the upregulation of phosphoglycerate mutase 1 and triosephosphate isomerase, a glycolytic enzyme member, reflecting the proliferative enhancement of sericin. The differentiation capacity of sericin was indicated by the increased expressions of procollagen12a1, collagen10a1, rab1A, periostin, galectin-1, and collagen6a3 proteins. Sericin influenced the differentiation capacity via the TGF-ß signaling pathway by upregulating Smad2 and Smad3 while downregulating Smad1, BMP2, and BMP4. Importantly, sericin exhibited an anti-inflammatory effect by reducing IL-1ß, TNF-α, and MMP-1 expressions and accelerating COL2A1 production in the early inflammatory stage. In conclusion, sericin demonstrates potential in promoting chondrogenic proliferation and differentiation, enhancing cartilaginous matrix synthesis through glycolysis and TGF-ß signaling pathways, and exhibiting anti-inflammatory properties.
Asunto(s)
Diferenciación Celular , Proliferación Celular , Condrogénesis , Glucólisis , Inflamación , Sericinas , Transducción de Señal , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteína Smad2/metabolismo , Animales , Transducción de Señal/efectos de los fármacos , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Condrogénesis/efectos de los fármacos , Sericinas/farmacología , Glucólisis/efectos de los fármacos , Ratones , Inflamación/metabolismo , Inflamación/patología , Inflamación/tratamiento farmacológico , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Línea Celular , Bombyx/metabolismoRESUMEN
The endogenous DNA damage triggering an aging progression in the elderly is prevented in the youth, probably by naturally occurring DNA gaps. Decreased DNA gaps are found during chronological aging in yeast. So we named the gaps "Youth-DNA-GAPs." The gaps are hidden by histone deacetylation to prevent DNA break response and were also reduced in cells lacking either the high-mobility group box (HMGB) or the NAD-dependent histone deacetylase, SIR2. A reduction in DNA gaps results in shearing DNA strands and decreasing cell viability. Here, we show the roles of DNA gaps in genomic stability and aging prevention in mammals. The number of Youth-DNA-GAPs were low in senescent cells, two aging rat models, and the elderly. Box A domain of HMGB1 acts as molecular scissors in producing DNA gaps. Increased gaps consolidated DNA durability, leading to DNA protection and improved aging features in senescent cells and two aging rat models similar to those of young organisms. Like the naturally occurring Youth-DNA-GAPs, Box A-produced DNA gaps avoided DNA double-strand break response by histone deacetylation and SIRT1, a Sir2 homolog. In conclusion, Youth-DNA-GAPs are a biomarker determining the DNA aging stage (young/old). Box A-produced DNA gaps ultimately reverse aging features. Therefore, DNA gap formation is a potential strategy to monitor and treat aging-associated diseases.
RESUMEN
We previously showed that zinc (Zn) deficiency affects the STAT3 signaling pathway in part through redox-regulated mechanisms. Given that STAT3 is central to the process of astrogliogenesis, this study investigated the consequences of maternal marginal Zn deficiency on the developmental timing and key mechanisms of STAT3 activation, and its consequences on astrogliogenesis in the offspring. This work characterized the temporal profile of cortical STAT3 activation from the mid embryonic stage up to young adulthood in the offspring from dams fed a marginal Zn deficient diet (MZD) throughout gestation and until postnatal day (P) 2. All rats were fed a Zn sufficient diet (control) from P2 until P56. Maternal zinc deficiency disrupted cortical STAT3 activation at E19 and P2. This was accompanied by altered activation of JAK2 kinase due to changes in PTP1B phosphatase activity. The underlying mechanisms mediating the adverse impact of a decreased Zn availability on STAT3 activation in the offspring brain include: (i) impaired PTP1B degradation via the ubiquitin/proteasome pathway; (ii) tubulin oxidation, associated decreased interactions with STAT3 and consequent impaired nuclear translocation; and (iii) decreased nuclear STAT3 acetylation. Zn deficiency-associated decreased STAT3 activation adversely impacted astrogliogenesis, leading to a lower astrocyte number in the early postnatal and adult brain cortex. Thus, a decreased availability of Zn during early development can have a major and irreversible adverse effect on astrogliogenesis, in part via multistep alterations in the STAT3 pathway.
Asunto(s)
Encéfalo , Transducción de Señal , Animales , Astrocitos , Ratas , Ratas Sprague-Dawley , ZincRESUMEN
Preclinical efforts to improve medical countermeasures against organophosphate (OP) chemical threat agents have largely focused on adult male models. However, age and sex have been shown to influence the neurotoxicity of repeated low-level OP exposure. Therefore, to determine the influence of sex and age on outcomes associated with acute OP intoxication, postnatal day 28 Sprague-Dawley male and female rats were exposed to the OP diisopropylfluorophosphate (DFP; 3.4 mg/kg, s.c.) or an equal volume of vehicle (â¼80 µL saline, s.c.) followed by atropine sulfate (0.1 mg/kg, i.m.) and pralidoxime (2-PAM; 25 mg/kg, i.m.). Seizure activity was assessed during the first 4 h post-exposure using behavioral criteria and electroencephalographic (EEG) recordings. At 1 d post-exposure, acetylcholinesterase (AChE) activity was measured in cortical tissue, and at 1, 7, and 28 d post-exposure, brains were collected for neuropathologic analyses. At 1 month post-DFP, animals were analyzed for motor ability, learning and memory, and hippocampal neurogenesis. Acute DFP intoxication triggered more severe seizure behavior in males than females, which was supported by EEG recordings. DFP caused significant neurodegeneration and persistent microglial activation in numerous brain regions of both sexes, but astrogliosis occurred earlier and was more severe in males compared to females. DFP males and females exhibited pronounced memory deficits relative to sex-matched controls. In contrast, acute DFP intoxication altered hippocampal neurogenesis in males, but not females. These findings demonstrate that acute DFP intoxication triggers seizures in juvenile rats of both sexes, but the seizure severity varies by sex. Some, but not all, chronic neurotoxic outcomes also varied by sex. The spatiotemporal patterns of neurological damage suggest that microglial activation may be a more important factor than astrogliosis or altered neurogenesis in the pathogenesis of cognitive deficits in juvenile rats acutely intoxicated with OPs.
RESUMEN
Acute intoxication with organophosphorus cholinesterase inhibitors (OPs) can trigger seizures that rapidly progress to life-threatening status epilepticus. Diazepam, long considered the standard of care for treating OP-induced seizures, is being replaced by midazolam. Whether midazolam is more effective than diazepam in mitigating the persistent effects of acute OP intoxication has not been rigorously evaluated. We compared the efficacy of diazepam vs. midazolam in preventing persistent neuropathology in adult male Sprague-Dawley rats acutely intoxicated with the OP diisopropylfluorophosphate (DFP). Subjects were administered pyridostigmine bromide (0.1 mg/kg, i.p.) 30 min prior to injection with DFP (4 mg/kg, s.c.) or vehicle (saline) followed 1 min later by atropine sulfate (2 mg/kg, i.m.) and pralidoxime (25 mg/kg, i.m.), and 40 min later by diazepam (5 mg/kg, i.p.), midazolam (0.73 mg/kg, i.m.), or vehicle. At 3 and 6 months post-exposure, neurodegeneration, reactive astrogliosis, microglial activation, and oxidative stress were assessed in multiple brain regions using quantitative immunohistochemistry. Brain mineralization was evaluated by in vivo micro-computed tomography (micro-CT). Acute DFP intoxication caused persistent neurodegeneration, neuroinflammation, and brain mineralization. Midazolam transiently mitigated neurodegeneration, and both benzodiazepines partially protected against reactive astrogliosis in a brain region-specific manner. Neither benzodiazepine attenuated microglial activation or brain mineralization. These findings indicate that neither benzodiazepine effectively protects against persistent neuropathological changes, and suggest that midazolam is not significantly better than diazepam. Overall, this study highlights the need for improved neuroprotective strategies for treating humans in the event of a chemical emergency involving OPs.
Asunto(s)
Encefalopatías/inducido químicamente , Encefalopatías/tratamiento farmacológico , Inhibidores de la Colinesterasa/envenenamiento , Diazepam/uso terapéutico , Moduladores del GABA/uso terapéutico , Isoflurofato/envenenamiento , Midazolam/uso terapéutico , Animales , Encefalopatías/patología , Gliosis/inducido químicamente , Gliosis/tratamiento farmacológico , Gliosis/patología , Masculino , Microglía/efectos de los fármacos , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Microtomografía por Rayos XRESUMEN
During pregnancy, a decreased availability of zinc to the fetus can disrupt the development of the central nervous system leading to defects ranging from severe malformations to subtle neurological and cognitive effects. We previously found that marginal zinc deficiency down-regulates the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway and affects neural progenitor cell (NPC) proliferation. This study investigated if marginal zinc deficiency during gestation in rats could disrupt fetal neurogenesis and affect the number and specification of neurons in the adult offspring brain cortex. Rats were fed a marginal zinc deficient or adequate diet throughout gestation and until postnatal day (P) 2, and subsequently the zinc adequate diet until P56. Neurogenesis was evaluated in the offspring at embryonic day (E)14, E19, P2, and P56 measuring parameters of NPC proliferation and differentiation by Western blot and/or immunofluorescence. At E14 and E19, major signals (i.e., ERK1/2, Sox2, and Pax6) that stimulate NPC proliferation and self-renewal were markedly downregulated in the marginal zinc deficient fetal brain. These alterations were associated to a lower number of Ki67 positive cells in the ventricular (VZs) and subventricular zones (SVZs). Following the progression of NPCs into intermediate progenitor cells (IPCs) and into neurons, Pax6, Tbr2 and Tbr1 were affected in the corresponding areas of the brain at E19 and P2. The above signaling alterations led to a lower density of neurons and a selective decrease of glutamatergic neurons in the young adult brain cortex exposed to maternal marginal zinc deficiency from E14 to P2. Current results supports the concept that marginal zinc deficiency during fetal development can disrupt neurogenesis and alter cortical structure potentially leading to irreversible neurobehavioral impairments later in life.
RESUMEN
Current treatments for seizures induced by organophosphates do not protect sufficiently against progressive neurodegeneration or delayed cognitive impairment. Developing more effective therapeutic approaches has been challenging because the pathogenesis of these delayed consequences is poorly defined. Using magnetic resonance imaging (MRI), we previously reported brain lesions that persist for months in a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP). However, the early spatiotemporal progression of these lesions remains unknown. To address this data gap, we used in vivo MRI to longitudinally monitor brain lesions during the first 3 d following acute DFP intoxication. Adult male Sprague Dawley rats acutely intoxicated with DFP (4mg/kg, sc) were MR imaged at 6, 12, 18, 24, 48, 72h post-DFP, and their brains then taken for correlative histology to assess neurodegeneration using FluoroJade C (FJC) staining. Acute DFP intoxication elicited moderate-to-severe seizure activity. T2-weighted (T2w) anatomic imaging revealed prominent lesions within the thalamus, piriform cortex, cerebral cortex, hippocampus, corpus striatum, and substantia nigra that corresponded to neurodegeneration, evident as bands of FJC positive cells. Semi-quantitative assessment of lesion severity demonstrated significant regional variation in the onset and progression of injury, and suggested that lesion severity may be modulated by isoflurane anesthesia. These results imply that the timing of therapeutic intervention for attenuating brain injury following OP intoxication may be regionally dependent, and that longitudinal assessment of OP-induced damage by MRI may be a powerful tool for assessing therapeutic response.
Asunto(s)
Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/patología , Isoflurofato/toxicidad , Estado Epiléptico/inducido químicamente , Animales , Lesiones Encefálicas/diagnóstico por imagen , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética , Masculino , Ratas Sprague-Dawley , Estado Epiléptico/diagnóstico por imagen , Estado Epiléptico/patologíaRESUMEN
Disruption of steroid hormone signaling has been implicated independently in the developmental abnormalities resulting from maternal phthalate plasticizer exposure and developmental zinc deficiency. This study investigated if secondary zinc deficiency may result from dietary exposure to a low level of di-2-ethylhexyl phthalate (DEHP) through gestation and if this could be associated with altered steroid metabolism. The interaction between marginal zinc nutrition and DEHP exposure to affect pregnancy outcome, zinc status, and steroid metabolism was also assessed. For this purpose, rats were fed a diet containing an adequate (25 mg/kg) or marginal (10 mg/kg) level of zinc without or with DEHP (300 mg/kg) from gestation day (GD) 0 until GD 19. Steroid profiles were measured in dam liver, plasma, adrenal glands, and in fetal liver by UPLC/MS-MS. In dams fed the adequate zinc diet, DEHP exposure decreased maternal weight gain and led to hepatic acute-phase response and zinc accumulation. The latter could compromise zinc availability to the fetus. DEHP and marginal zinc deficiency caused several adverse effects on the maternal and fetal steroid profiles. Interactions between DEHP exposure and marginal zinc deficient nutrition affected 17OH pregnenolone and corticosterone, while pregnenolone levels were specifically affected by DEHP exposure. Maternal marginal zinc deficiency specifically affected maternal progesterone and aldosterone, and presented evidence of increased androgen aromatization activity in maternal and fetal tissues. Results stress the potential major impact of mild DEHP exposure on maternal/fetal steroid metabolism that can be potentiated by nutritional and chronic disease states leading to zinc deficiency.
Asunto(s)
Dietilhexil Ftalato/toxicidad , Trastornos del Crecimiento/etiología , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/etiología , Esteroides/metabolismo , Zinc/deficiencia , Animales , Femenino , Trastornos del Crecimiento/embriología , Trastornos del Crecimiento/metabolismo , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas Sprague-DawleyRESUMEN
This study investigated if a marginal zinc deficiency during gestation in rats could affect fetal neural progenitor cell (NPC) proliferation through a down-regulation of the extracellular signal-regulated kinase (ERK1/2) signaling pathway. Rats were fed a marginally zinc-deficient or adequate diet from the beginning of gestation until embryonic day (E)19. The proportion of proliferating cells in the E19 fetal ventricular zone was decreased by marginal zinc deficiency. Immunostaining for phosphorylated ERK1/2 in the cerebral cortex was decreased in the marginal zinc fetuses, and this effect was strongest in the ventricular zone. Furthermore, phosphorylation of the upstream mitogen-activated ERK kinases (MEK1/2) was not affected, suggesting that marginal zinc deficiency could have increased ERK-directed phosphatase activity. Similar findings were observed in cultured rat embryonic cortical neurons and in IMR-32 neuroblastoma cells, in which zinc-deficiency decreased ERK1/2 phosphorylation without affecting MEK1/2 phosphorylation. Indeed, zinc deficiency increased the activity of the ERK-directed phosphatase protein phosphatase 2A (PP2A) in the fetal cortex and IMR-32 cells. Inhibition of PP2A with okadaic acid prevented the decrease in ERK phosphorylation and proliferation of zinc-deficient IMR-32 cells. Together these results demonstrated that decreased zinc availability reduces ERK1/2 signaling and decreased NPC proliferation as a consequence of PP2A activation. Disruption of fetal neurogenesis could underlie irreversible neurobehavioral impairments observed after even marginal zinc nutrition during a critical period of early brain development.
Asunto(s)
Encéfalo/embriología , Sistema de Señalización de MAP Quinasas , Células-Madre Neurales/metabolismo , Zinc/deficiencia , Animales , Encéfalo/citología , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Células-Madre Neurales/citología , Ácido Ocadaico/farmacología , Fosforilación , Embarazo , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Ratas Sprague-DawleyRESUMEN
A deficit in zinc (Zn) availability can increase cell oxidant production, affect the antioxidant defense system, and trigger oxidant-sensitive signals in neuronal cells. This work tested the hypothesis that a decreased Zn availability can affect glutathione (GSH) metabolism in the developing rat brain and in neuronal cells in culture, as well as the capacity of human neuroblastoma IMR-32 cells to upregulate GSH when challenged with dopamine (DA). GSH levels were low in the brain of gestation day 19 (GD19) fetuses from dams fed marginal Zn diets throughout gestation and in Zn-deficient IMR-32 cells. γ-Glutamylcysteine synthetase (GCL), the first enzyme in the GSH synthetic pathway, was altered by Zn deficiency (ZD). The protein and mRNA levels of the GCL modifier (GCLM) and catalytic (GCLC) subunits were lower in the Zn-deficient GD19 fetal brain and in IMR-32 cells compared with controls. The nuclear translocation of transcription factor nuclear factor (erythroid-derived 2)-like 2, which controls GCL transcription, was impaired by ZD. Posttranslationally, the caspase-3-dependent GCLC cleavage was high in Zn-deficient IMR-32 cells. Cells challenged with DA showed an increase in GCLM and GCLC protein and mRNA levels and a consequent increase in GSH concentration. Although Zn-deficient cells partially upregulated GCL subunits after exposure to DA, GSH content remained low. In summary, results show that a low Zn availability affects the GSH synthetic pathway in neuronal cells and fetal brain both at transcriptional and posttranslational levels. This can in part underlie the GSH depletion associated with ZD and the high sensitivity of Zn-deficient neurons to pro-oxidative stressors.