Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Gut ; 73(10): 1632-1649, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38740509

RESUMEN

OBJECTIVE: To decipher the mechanisms by which the major human milk oligosaccharide (HMO), 2'-fucosyllactose (2'FL), can affect body weight and fat mass gain on high-fat diet (HFD) feeding in mice. We wanted to elucidate whether 2'FL metabolic effects are linked with changes in intestinal mucus production and secretion, mucin glycosylation and degradation, as well as with the modulation of the gut microbiota, faecal proteome and endocannabinoid (eCB) system. RESULTS: 2'FL supplementation reduced HFD-induced obesity and glucose intolerance. These effects were accompanied by several changes in the intestinal mucus layer, including mucus production and composition, and gene expression of secreted and transmembrane mucins, glycosyltransferases and genes involved in mucus secretion. In addition, 2'FL increased bacterial glycosyl hydrolases involved in mucin glycan degradation. These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides, different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system. We also investigated faecal proteomes from lean and obese humans and found similar changes observed comparing lean and obese mice. CONCLUSION: Our results show that the HMO 2'FL influences host metabolism by modulating the mucus layer, gut microbiota and eCB system and propose the mucus layer as a new potential target for the prevention of obesity and related disorders.


Asunto(s)
Dieta Alta en Grasa , Heces , Microbioma Gastrointestinal , Obesidad , Trisacáridos , Animales , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Obesidad/microbiología , Obesidad/prevención & control , Microbioma Gastrointestinal/efectos de los fármacos , Trisacáridos/metabolismo , Ratones , Heces/microbiología , Heces/química , Humanos , Leche Humana/metabolismo , Leche Humana/química , Mucosa Intestinal/metabolismo , Proteoma/metabolismo , Proteoma/análisis , Moco/metabolismo , Masculino , Ratones Endogámicos C57BL , Mucinas/metabolismo
2.
Am J Physiol Endocrinol Metab ; 324(1): E85-E96, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516223

RESUMEN

Diet-induced obesity contributes to the development of type 2 diabetes, insulin resistance, metabolic inflammation, oxidative and endoplasmic reticulum (ER) stress. Overall, obesity is associated with deviations in the composition and functionality of the gut microbiota. There are many divergent findings regarding the link between the excessive intake of certain dietary components (i.e., fat and sugar) and obesity development. We therefore investigated the effect of specific diets, with a different content of sugar and fat, in promoting obesity and related comorbidities as well as their impact on microbial load and gut microbiota composition/diversity. C57BL/6J mice were fed either a low-sugar, low-fat control diet (CT), a high-sugar diet (HS), a high-fat, high-sugar diet (HF/HS), or a high-fat diet (HF) for 8 wk. The impact of the different diets on obesity, glucose metabolism, inflammation, and oxidative and ER stress was determined. Diet-induced changes in the gut microbiota composition and density were also analyzed. HF diet-fed mice showed the highest body weight and fat mass gains and displayed the most impaired glucose and insulin profiles. HS, HF/HS, and HF diets differently affected hepatic cholesterol content and mRNA expression of several markers associated with immune cells, inflammation, oxidative and ER stress in several organs/tissues. In addition, HF diet feeding resulted in a decreased microbial load at the end of the experiment. When analyzing the gut microbiota composition, we found that HS, HF/HS, and HF diets induced specific changes in the abundance of certain bacterial taxa. This was not associated with a specific change in systemic inflammatory markers, but HS mice exhibited higher FGF21 plasma levels compared with HF diet-fed mice. Taken together, our results highlight that dietary intake of different macronutrients distinctively impacts the development of an obese/diabetic state and the regulation of metabolic inflammation in specific organs. We propose that these differences are not only obesity-driven but that changes in the gut microbiota composition may play a key role in this context.NEW & NOTEWORTHY To our knowledge, this study is the first to demonstrate that dietary macronutrients (i.e., sugar and fat) have an impact on fecal bacterial cell counting and quantitative microbiome profiling in mice. Yet, we demonstrate that dietary fat is the determining factor to promote obesity and diabetes progression, and local inflammation in different body sites. These observations can help to disentangle the conundrum of the detrimental effects of fat and sugar in our dietary habits.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ratones , Animales , Azúcares/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Dieta Alta en Grasa , Inflamación , Bacterias
3.
Molecules ; 27(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35011234

RESUMEN

The endocannabinoidome (expanded endocannabinoid system, eCBome)-gut microbiome (mBIome) axis plays a fundamental role in the control of energy intake and processing. The liver-expressed antimicrobial peptide 2 (LEAP2) is a recently identified molecule acting as an antagonist of the ghrelin receptor and hence a potential effector of energy metabolism, also at the level of the gastrointestinal system. Here we investigated the role of the eCBome-gut mBIome axis in the control of the expression of LEAP2 in the liver and, particularly, the intestine. We confirm that the small intestine is a strong contributor to the circulating levels of LEAP2 in mice, and show that: (1) intestinal Leap2 expression is profoundly altered in the liver and small intestine of 13 week-old germ-free (GF) male mice, which also exhibit strong alterations in eCBome signaling; fecal microbiota transfer (FMT) from conventionally raised to GF mice completely restored normal Leap2 expression after 7 days from this procedure; in 13 week-old female GF mice no significant change was observed; (2) Leap2 expression in organoids prepared from the mouse duodenum is elevated by the endocannabinoid noladin ether, whereas in human Caco-2/15 epithelial intestinal cells it is elevated by PPARγ activation by rosiglitazone; (3) Leap2 expression is elevated in the ileum of mice with either high-fat diet-or genetic leptin signaling deficiency-(i.e., ob/ob and db/db mice) induced obesity. Based on these results, we propose that LEAP2 originating from the small intestine may represent a player in eCBome- and/or gut mBIome-mediated effects on food intake and energy metabolism.


Asunto(s)
Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Endocannabinoides/genética , Microbioma Gastrointestinal/genética , Receptores de Ghrelina/antagonistas & inhibidores , Animales , Células CACO-2 , Dieta Alta en Grasa , Femenino , Glicéridos/metabolismo , Humanos , Intestinos , Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Obesidad , ARN Mensajero/genética , Rosiglitazona/metabolismo , Transducción de Señal , Espectrometría de Masas en Tándem
4.
Gut ; 69(5): 911-919, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31401561

RESUMEN

OBJECTIVE: To fulfil an unmet therapeutic need for treating type 2 diabetes by developing an innovative oral drug delivery nanosystem increasing the production of glucagon-like peptide-1 (GLP-1) and the absorption of peptides into the circulation. DESIGN: We developed a nanocarrier for the oral delivery of peptides using lipid-based nanocapsules. We encapsulated the GLP-1 analogue exenatide within nanocapsules and investigated in vitro in human L-cells (NCl-H716) and murine L-cells (GLUTag cells) the ability of the nanosystem to trigger GLP-1 secretion. The therapeutic relevance of the nanosystem in vivo was tested in high-fat diet (HFD)-induced diabetic mice following acute (one administration) or chronic treatment (5 weeks) in obese and diabetic mice. RESULTS: We demonstrated that this innovative nanosystem triggers GLP-1 secretion in both human and murine cells as well as in vivo in mice. This strategy increases the endogenous secretion of GLP-1 and the oral bioavailability of the GLP-1 analogue exenatide (4% bioavailability with our nanosystem).The nanosystem synergizes its own biological effect with the encapsulated GLP-1 analogue leading to a marked improvement of glucose tolerance and insulin resistance (acute and chronic). The chronic treatment decreased diet-induced obesity, fat mass, hepatic steatosis, together with lower infiltration and recruitment of immune cell populations and inflammation. CONCLUSION: We developed a novel nanosystem compatible with human use that synergizes its own biological effect with the effects of increasing the bioavailability of a GLP-1 analogue. The effects of the formulation were comparable to the results observed for the marketed subcutaneous formulation. This nanocarrier-based strategy represents a novel promising approach for oral peptide delivery in incretin-based diabetes treatment.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Exenatida/administración & dosificación , Péptido 1 Similar al Glucagón/efectos de los fármacos , Incretinas/administración & dosificación , Nanocápsulas/administración & dosificación , Administración Oral , Análisis de Varianza , Animales , Esquema de Medicación , Portadores de Fármacos/administración & dosificación , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Hipoglucemiantes/administración & dosificación , Secreción de Insulina/efectos de los fármacos , Masculino , Ratones , Distribución Aleatoria , Resultado del Tratamiento
5.
Front Nutr ; 11: 1390734, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863586

RESUMEN

The European Union (EU) is committed to transitioning toward a circular economy model, with food waste being one of the areas to be targeted. To close the loop of food waste generated during food processing and discarded at the retail or consumption phases, research and innovation parties proposed to valorize agro-food by-products to produce novel foods and food improvement agents (food additives, food enzymes, and food flavorings). In the EU, the authorization of such novel foods and food improvement agents is governed by different regulatory frameworks. A centralized safety assessment by the European Food Safety Authority (EFSA) is the prerequisite for their authorization through the so-called Union Lists. Up to December 2023, EFSA published 45 scientific opinions on the safety of novel foods, food enzymes, and food additives derived from by-products of plant and animal origin. The current study illustrates examples of these by-products for the production of novel foods or food improvement agents and the data requirements behind their respective safety assessments conducted by EFSA. In this review, applications on novel foods, food enzymes, and food additives received by EFSA were screened and analyzed to find the common scientific requirements and differences in terms of the safety evaluation of such products. Various by-products (i.e., corncobs, coffee husks, spent grains of barley and rice, grape pomace, pumpkin peels, bovine whey, eggshells, shrimp heads, and animal organs or tissues) were described in the applications as being processed (extraction, physical treatments, and chemical and enzymatic reactions) to obtain novel foods and food improvement agents. The heterogeneity and complexity of these products emphasize the challenge of their safety assessment, depending on the characteristics of each product. However, as this study shows, the scientific requirements underpinning their safety do not differ substantially in the different regulated product areas considered, with similar information needed to assess their safety in terms of identity, production process, compositional characterization, proposed/intended uses and exposure assessment, toxicological information, and allergenicity data. Additional nutritional information and data on the history of use are required in the case of novel foods.

6.
Life (Basel) ; 13(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629622

RESUMEN

The microbiota inhabits the gastrointestinal tract, providing essential capacities to the host. The microbiota is a crucial factor in intestinal health and regulates intestinal physiology. However, microbiota disturbances, named dysbiosis, can disrupt intestinal homeostasis, leading to the development of diseases. Classically, the microbiota has been referred to as bacteria, though other organisms form this complex group, including viruses, archaea, and eukaryotes such as fungi and protozoa. This review aims to clarify the role of helminths, bacteriophages, fungi, and archaea in intestinal homeostasis and diseases, their interaction with bacteria, and their use as therapeutic targets in intestinal maladies.

7.
Cells ; 12(3)2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36766753

RESUMEN

Obesity is associated with a cluster of metabolic disorders, chronic low-grade inflammation, altered gut microbiota, increased intestinal permeability, and alterations of the lipid mediators of the expanded endocannabinoid (eCB) signaling system, or endocannabinoidome (eCBome). In the present study, we characterized the profile of the eCBome and related oxylipins in the small and large intestines of genetically obese (ob/ob) and diabetic (db/db) mice to decipher possible correlations between these mediators and intestinal inflammation and gut microbiota composition. Basal lipid and gene expression profiles, measured by LC/MS-MS-based targeted lipidomics and qPCR transcriptomics, respectively, highlighted a differentially altered intestinal eCBome and oxylipin tone, possibly linked to increased mRNA levels of inflammatory markers in db/db mice. In particular, the duodenal levels of several 2-monoacylglycerols and N-acylethanolamines were increased and decreased, respectively, in db/db mice, which displayed more pronounced intestinal inflammation. To a little extent, these differences were explained by changes in the expression of the corresponding metabolic enzymes. Correlation analyses suggested possible interactions between eCBome/oxylipin mediators, cytokines, and bacterial components and bacterial taxa closely related to intestinal inflammation. Collectively, this study reveals that db/db mice present a higher inflammatory state in the intestine as compared to ob/ob mice, and that this difference is associated with profound and potentially adaptive or maladaptive, and partly intestinal segment-specific alterations in eCBome and oxylipin signaling. This study opens the way to future investigations on the biological role of several poorly investigated eCBome mediators and oxylipins in the context of obesity and diabetes-induced gut dysbiosis and inflammation.


Asunto(s)
Diabetes Mellitus , Microbioma Gastrointestinal , Ratones , Animales , Oxilipinas , Transcriptoma/genética , Lipidómica , Obesidad/metabolismo , Inflamación/complicaciones , Ratones Endogámicos , Intestinos
8.
Gut Microbes ; 15(1): 2178796, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36803220

RESUMEN

Consumption of prebiotics and plant-based compounds have many beneficial health effects through modulation of gut microbiota composition and are considered as promising nutritional strategy for the treatment of metabolic diseases. In the present study, we assessed the separated and combined effects of inulin and rhubarb on diet-induced metabolic disease in mice. We showed that supplementation with both inulin and rhubarb abolished the total body and fat mass gain upon high-fat and high-sucrose diet (HFHS) as well as several obesity-associated metabolic disorders. These effects were associated with increased energy expenditure, lower whitening of the brown adipose tissue, higher mitochondria activity and increased expression of lipolytic markers in white adipose tissue. Despite modifications of intestinal gut microbiota and bile acid compositions by inulin or rhubarb alone, combination of both inulin and rhubarb had minor additional impact on these parameters. However, the combination of inulin and rhubarb increased the expression of several antimicrobial peptides and higher goblet cell numbers, thereby suggesting a reinforcement of the gut barrier. Together, these results suggest that the combination of inulin and rhubarb in mice potentiates beneficial effects of separated rhubarb and inulin on HFHS-related metabolic disease and could be considered as nutritional strategy for the prevention and treatment of obesity and related pathologies.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Metabólicas , Rheum , Animales , Ratones , Tejido Adiposo Pardo , Inulina/farmacología , Inulina/metabolismo , Rheum/metabolismo , Azúcares/metabolismo , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Prebióticos , Enfermedades Metabólicas/metabolismo , Ratones Endogámicos C57BL , Tejido Adiposo/metabolismo
9.
Front Immunol ; 13: 953196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177011

RESUMEN

The intestinal tract is an ecosystem in which the resident microbiota lives in symbiosis with its host. This symbiotic relationship is key to maintaining overall health, with dietary habits of the host representing one of the main external factors shaping the microbiome-host relationship. Diets high in fiber and low in fat and sugars, as opposed to Western and high-fat diets, have been shown to have a beneficial effect on intestinal health by promoting the growth of beneficial bacteria, improve mucus barrier function and immune tolerance, while inhibiting pro-inflammatory responses and their downstream effects. On the contrary, diets low in fiber and high in fat and sugars have been associated with alterations in microbiota composition/functionality and the subsequent development of chronic diseases such as food allergies, inflammatory bowel disease, and metabolic disease. In this review, we provided an updated overview of the current understanding of the connection between diet, microbiota, and health, with a special focus on the role of Western and high-fat diets in shaping intestinal homeostasis by modulating the gut microbiota.


Asunto(s)
Ecosistema , Microbioma Gastrointestinal , Dieta Alta en Grasa , Fibras de la Dieta , Moco , Azúcares
10.
Gut Microbes ; 14(1): 2152307, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36448728

RESUMEN

Obesity is a major risk factor for the development of type 2 diabetes and cardiovascular diseases, and gut microbiota plays a key role in influencing the host energy homeostasis. Moreover, obese mice have a different gut microbiota composition, associated with an alteration of the intestinal mucus layer, which represents the interface between the bacteria and the host. We previously demonstrated that prebiotic treatment with oligofructose (FOS) counteracted the effects of diet-induced obesity, together with changes in the gut microbiota composition, but it is not known if the intestinal mucus layer could be involved. In this study, we found that, in addition to preventing high-fat diet (HFD) induced obesity in mice, the treatment with FOS increased the expression of numerous genes involved in mucus production, glycosylation and secretion, the expression of both secreted and transmembrane mucins, and the differentiation and number of goblet cells. These results were associated with significant changes in the gut microbiota composition, with FOS significantly increasing the relative and absolute abundance of the bacterial genera Odoribacter, Akkermansia, two unknown Muribaculaceae and an unknown Ruminococcaceae. Interestingly, all these bacterial genera had a negative association with metabolic parameters and a positive association with markers of the mucus layer. Our study shows that FOS treatment is able to prevent HFD-induced metabolic disorders, at least in part, by acting on all the processes of the mucus production. These data suggest that targeting the mucus and the gut microbiota by using prebiotics could help to prevent or mitigate obesity and related disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ratones , Animales , Prebióticos , Dieta Alta en Grasa/efectos adversos , Glicosilación , Obesidad/prevención & control , Bacteroidetes , Moco
11.
Artículo en Inglés | MEDLINE | ID: mdl-34606993

RESUMEN

BACKGROUND: Obesity and type 2 diabetes are two interrelated metabolic disorders characterized by insulin resistance and a mild chronic inflammatory state. We previously observed that leptin (ob/ob) and leptin receptor (db/db) knockout mice display a distinct inflammatory tone in the liver and adipose tissue. The present study aimed at investigating whether alterations in these tissues of the molecules belonging to the endocannabinoidome (eCBome), an extension of the endocannabinoid (eCB) signaling system, whose functions are important in the context of metabolic disorders and inflammation, could reflect their different inflammatory phenotypes. RESULTS: The basal eCBome lipid and gene expression profiles, measured by targeted lipidomics and qPCR transcriptomics, respectively, in the liver and subcutaneous or visceral adipose tissues, highlighted a differentially altered eCBome tone, which may explain the impaired hepatic function and more pronounced liver inflammation remarked in the ob/ob mice, as well as the more pronounced inflammatory state observed in the subcutaneous adipose tissue of db/db mice. In particular, the levels of linoleic acid-derived endocannabinoid-like molecules, of one of their 12-lipoxygenase metabolites and of Trpv2 expression, were always altered in tissues exhibiting the highest inflammation. Correlation studies suggested the possible interactions with some gut microbiota bacterial taxa, whose respective absolute abundances were significantly different between ob/ob and the db/db mice. CONCLUSIONS: The present findings emphasize the possibility that bioactive lipids and the respective receptors and enzymes belonging to the eCBome may sustain the tissue-dependent inflammatory state that characterizes obesity and diabetes, possibly in relation with gut microbiome alterations.


Asunto(s)
Canales de Calcio/genética , Diabetes Mellitus Tipo 2/genética , Leptina/genética , Obesidad/genética , Receptores de Leptina/genética , Canales Catiónicos TRPV/genética , Tejido Adiposo/metabolismo , Animales , Araquidonato 12-Lipooxigenasa/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Endocannabinoides/genética , Microbioma Gastrointestinal/genética , Regulación de la Expresión Génica/genética , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos NOD/genética , Ratones Endogámicos NOD/microbiología , Ratones Obesos/genética , Ratones Obesos/microbiología , Obesidad/metabolismo , Obesidad/patología , Transcriptoma/genética
12.
Microbiome ; 9(1): 147, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183063

RESUMEN

BACKGROUND: Leptin-deficient ob/ob mice and leptin receptor-deficient db/db mice are commonly used mice models mimicking the conditions of obesity and type 2 diabetes development. However, although ob/ob and db/db mice are similarly gaining weight and developing massive obesity, db/db mice are more diabetic than ob/ob mice. It remains still unclear why targeting the same pathway-leptin signaling-leads to the development of two different phenotypes. Given that gut microbes dialogue with the host via different metabolites (e.g., short-chain fatty acids) but also contribute to the regulation of bile acids metabolism, we investigated whether inflammatory markers, bacterial components, bile acids, short-chain fatty acids, and gut microbes could contribute to explain the specific phenotype discriminating the onset of an obese and/or a diabetic state in ob/ob and db/db mice. RESULTS: Six-week-old ob/ob and db/db mice were followed for 7 weeks; they had comparable body weight, fat mass, and lean mass gain, confirming their severely obese status. However, as expected, the glucose metabolism and the glucose-induced insulin secretion were significantly different between ob/ob and db/db mice. Strikingly, the fat distribution was different, with db/db mice having more subcutaneous and ob/ob mice having more epididymal fat. In addition, liver steatosis was more pronounced in the ob/ob mice than in db/db mice. We also found very distinct inflammatory profiles between ob/ob and db/db mice, with a more pronounced inflammatory tone in the liver for ob/ob mice as compared to a higher inflammatory tone in the (subcutaneous) adipose tissue for db/db mice. When analyzing the gut microbiota composition, we found that the quantity of 19 microbial taxa was in some way affected by the genotype. Furthermore, we also show that serum LPS concentration, hepatic bile acid content, and cecal short-chain fatty acid profiles were differently affected by the two genotypes. CONCLUSION: Taken together, our results elucidate potential mechanisms implicated in the development of an obese or a diabetic state in two genetic models characterized by an altered leptin signaling. We propose that these differences could be linked to specific inflammatory tones, serum LPS concentration, bile acid metabolism, short-chain fatty acid profile, and gut microbiota composition. Video abstract.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Diabetes Mellitus Tipo 2/genética , Leptina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad
13.
J Cachexia Sarcopenia Muscle ; 12(6): 1527-1539, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34535959

RESUMEN

BACKGROUND: We have previously shown that glycine increases fat-free mass in chronic haemodialysis patients with features of malnutrition as compared with branched-chain amino acids (BCAAs). This multicentre randomized double-blind crossover study evaluates the impact of these amino acids on the gut barrier and microbiota. METHODS: Haemodialysis patients were included if they had plasma albumin <38 g/L or weight loss >5% of dry body weight, and daily dietary intakes <30 kcal/kg and <1 g protein/kg. They consumed glycine or BCAA (7 g twice daily) for 4 months and underwent a 1 month washout period, before crossover of supplementations. Faecal microbiota (16S rRNA gene sequencing) and immunoglobulin A (IgA), serum levels of cytokines, surrogate markers of intestinal permeability, appetite mediators, and endocannabinoids were obtained at the start and end of each supplementation. Supplementations were compared by multiple mixed linear regression models, adjusted for age, sex, month of supplementation (0 and 4 in each period), and period (Period 1: first 4 months; Period 2: last 4 months). Microbiota comparisons were performed using principal coordinate analysis and permutational multivariate analysis of variance, Shannon diversity index estimate and analysis of composition of microbiomes analysis, and Wilcoxon tests. RESULTS: We analysed 27 patients compliant to the supplementations. Multiple mixed linear regression models were significant only for interleukin-6 (P = 0.002), glucagon-like peptide 1 (P = 0.028), cholecystokinin (P = 0.021), and peptide YY (P = 0.002), but not for the other outcomes. The significant models did not show any impact of the type of supplementation (P < 0.05 in all models). Principal coordinate analysis and permutational multivariate analysis of variance (P = 0.0001) showed strong microbiota clustering by subject, but no effect of the amino acids. Bacterial alpha diversity and zero-radius operational taxonomic unit richness remained stable, whatever the supplementation. Lacticaseibacillus paracasei (0.030; Q1-Q3 0.008-0.078 vs. 0.004; Q1-Q3 0.001-0.070) and Bifidobacterium dentium (0.0247; Q1-Q3 0.002-0.191 vs. 0.003; Q1-Q3 0.001-0.086) significantly decreased with the BCAA supplementation. CONCLUSIONS: The BCAA and glycine supplementations had no impact on the serum levels of cytokines, appetite mediators, intestinal permeability, endocannabinoids, or faecal IgA. Overall faecal microbiota composition and microbial diversity did not change with the glycine or BCAA supplementation but decreased the abundance of L. paracasei and B. dentium.


Asunto(s)
Glicina , Microbiota , Aminoácidos de Cadena Ramificada , Estudios Cruzados , Suplementos Dietéticos , Humanos , ARN Ribosómico 16S/genética , Diálisis Renal
14.
Curr Opin Pharmacol ; 52: 9-17, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32388413

RESUMEN

Both skeletal muscle and adipose tissue are considered as endocrine organs due to their ability to produce and secrete several bioactive peptides (e.g. myokines and adipokines). Those bioactive molecules are well known for their capacity to influence whole-body homeostasis and alterations in their production/secretion are contributing to the development of various metabolic disorders. While it is well accepted that changes in the composition and functionality of the gut microbiota are associated with the onset of several pathological disorders (e.g. obesity, diabetes, and cancer), its contribution to the regulation of the myokine-adipokine profile and function remains largely unknown. This review will focus on myokines and adipokines with a special interest on their interaction with the gut microbiota.


Asunto(s)
Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Microbioma Gastrointestinal/fisiología , Músculo Esquelético/metabolismo , Músculo Liso/metabolismo , Miocardio/metabolismo , Animales , Ejercicio Físico/fisiología , Humanos
15.
Nutrients ; 12(10)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987923

RESUMEN

Obesity and obesity-related disorders, such as type 2 diabetes have been progressively increasing worldwide and treatments have failed to counteract their progression. Growing evidence have demonstrated that gut microbiota is associated with the incidence of these pathologies. Hence, the identification of new nutritional compounds, able to improve health through a modulation of gut microbiota, is gaining interest. In this context, the aim of this study was to investigate the gut-driving effects of rhubarb extract in a context of diet-induced obesity and diabetes. Eight weeks old C57BL6/J male mice were fed a control diet (CTRL), a high fat and high sucrose diet (HFHS) or a HFHS diet supplemented with 0.3% (g/g) of rhubarb extract for eight weeks. Rhubarb supplementation fully prevented HFHS-induced obesity, diabetes, visceral adiposity, adipose tissue inflammation and liver triglyceride accumulation, without any modification in food intake. By combining sequencing and qPCR methods, we found that all these effects were associated with a blooming of Akkermansia muciniphila, which is strongly correlated with increased expression of Reg3γ in the colon. Our data showed that rhubarb supplementation is sufficient to protect against metabolic disorders induced by a diet rich in lipid and carbohydrates in association with a reciprocal interaction between Akkermansia muciniphila and Reg3γ.


Asunto(s)
Akkermansia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Suplementos Dietéticos , Obesidad/tratamiento farmacológico , Rheum/química , Tejido Adiposo/metabolismo , Akkermansia/aislamiento & purificación , Animales , Biomarcadores/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Diabetes Mellitus Tipo 2/etiología , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Inflamación/tratamiento farmacológico , Inflamación/etiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Raíces de Plantas/química , Análisis de Secuencia de ADN , Triglicéridos/metabolismo
16.
Opt Express ; 16(10): 7540-50, 2008 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-18545459

RESUMEN

Electro optical absorption in hydrogenated amorphous silicon (proportional-Si:H)--morphous silicon carbonitride (proportional-SiCxNy) multilayers have been studied in two different planar multistacks waveguides. The waveguides were realized by plasma enhanced chemical vapour deposition (PECVD), a technology compatible with the standard microelectronic processes. Light absorption is induced at lambda = 1.55 microm through the application of an electric field which induces free carrier accumulation across the multiple insulator/semiconductor device structure. The experimental performances have been compared to those obtained through calculations using combined two-dimensional (2-D) optical and electrical simulations.

17.
Sci Rep ; 7(1): 5621, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28717237

RESUMEN

The aim of this study was to determine the impact of different wheat bran fractions on the gut microbiota and fat binding capacity to explain their differential effects on metabolic and inflammatory disorders induced by a western diet (WD) in mice. Wheat bran derived arabinoxylan oligosaccharides (AXOS), a crude fraction of wheat bran (WB), or the same wheat bran with reduced particle size (WBs) were added to the WD of mice for 8 weeks. AXOS shifted the gut microbiota composition, blunted Clostridium and Turicibacter genera and strongly promoted Bifidobacterium and Butyricicoccus genera, independently of changes in gut antimicrobial peptide expression. AXOS was the most efficient to reduce adiposity. Only WB fraction promoted fat excretion and differed from the other fractions by the capacity to increase the Akkermansia genus and to counteract gut interleukin 1 beta (IL1ß) overexpression. Strikingly, WBs promoted steatosis and adipose tissue inflammation, despite its ability -like WB- to increase bacterial diversity. In conclusion, wheat bran fractions differently affect metabolic and inflammatory disorders associated with WD feeding, depending on their particle size, their fat binding capacity and their influence on the gut microbiota. Those results might be useful to take into account in nutritional advices to control obesity.


Asunto(s)
Adiposidad/efectos de los fármacos , Bacterias/clasificación , Fibras de la Dieta/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Xilanos/administración & dosificación , Animales , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bifidobacterium/clasificación , Bifidobacterium/genética , Bifidobacterium/crecimiento & desarrollo , Clostridiaceae/clasificación , Clostridiaceae/genética , Clostridiaceae/crecimiento & desarrollo , ADN Bacteriano/genética , ADN Ribosómico/genética , Dieta Occidental/efectos adversos , Fibras de la Dieta/farmacología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Interleucina-1beta/metabolismo , Ratones , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Verrucomicrobia/clasificación , Verrucomicrobia/genética , Verrucomicrobia/crecimiento & desarrollo , Xilanos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA