Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(3): 568-584.e23, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31981491

RESUMEN

We present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n = 35,584 total samples, 11,986 with ASD). Using an enhanced analytical framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate of 0.1 or less. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained to have severe neurodevelopmental delay, whereas 53 show higher frequencies in individuals ascertained to have ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In cells from the human cortex, expression of risk genes is enriched in excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.


Asunto(s)
Trastorno Autístico/genética , Corteza Cerebral/crecimiento & desarrollo , Secuenciación del Exoma/métodos , Regulación del Desarrollo de la Expresión Génica , Neurobiología/métodos , Estudios de Casos y Controles , Linaje de la Célula , Estudios de Cohortes , Exoma , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Masculino , Mutación Missense , Neuronas/metabolismo , Fenotipo , Factores Sexuales , Análisis de la Célula Individual/métodos
2.
Proc Natl Acad Sci U S A ; 116(9): 3853-3862, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30755521

RESUMEN

The human dopamine (DA) transporter (hDAT) mediates clearance of DA. Genetic variants in hDAT have been associated with DA dysfunction, a complication associated with several brain disorders, including autism spectrum disorder (ASD). Here, we investigated the structural and behavioral bases of an ASD-associated in-frame deletion in hDAT at N336 (∆N336). We uncovered that the deletion promoted a previously unobserved conformation of the intracellular gate of the transporter, likely representing the rate-limiting step of the transport process. It is defined by a "half-open and inward-facing" state (HOIF) of the intracellular gate that is stabilized by a network of interactions conserved phylogenetically, as we demonstrated in hDAT by Rosetta molecular modeling and fine-grained simulations, as well as in its bacterial homolog leucine transporter by electron paramagnetic resonance analysis and X-ray crystallography. The stabilization of the HOIF state is associated both with DA dysfunctions demonstrated in isolated brains of Drosophila melanogaster expressing hDAT ∆N336 and with abnormal behaviors observed at high-time resolution. These flies display increased fear, impaired social interactions, and locomotion traits we associate with DA dysfunction and the HOIF state. Together, our results describe how a genetic variation causes DA dysfunction and abnormal behaviors by stabilizing a HOIF state of the transporter.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Dopamina/genética , Locomoción/genética , Animales , Animales Modificados Genéticamente , Trastorno del Espectro Autista/fisiopatología , Cristalografía por Rayos X , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Espectroscopía de Resonancia por Spin del Electrón , Miedo/fisiología , Humanos , Relaciones Interpersonales , Locomoción/fisiología , Modelos Moleculares , Mutación , Eliminación de Secuencia/genética
3.
Am J Med Genet B Neuropsychiatr Genet ; 189(6): 185-195, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35841203

RESUMEN

Testing the association between genetic scores for Attention Deficit Hyperactivity Disorder (ADHD) and health conditions, can help us better understand its complex etiology. Electronic health records linked to genetic data provide an opportunity to test whether genetic scores for ADHD correlate with ADHD and additional health outcomes in a health care context across different age groups. We generated polygenic scores (ADHD-PGS) trained on summary statistics from the latest genome-wide association study of ADHD (N = 55,374) and applied them to genome-wide data from 12,383 unrelated individuals of African-American ancestry and 66,378 unrelated individuals of European ancestry from the Vanderbilt Biobank. Overall, only Tobacco use disorder (TUD) was associated with ADHD-PGS in the African-American ancestry group (Odds ratio [95% confidence intervals] = 1.23[1.16-1.31], p = 9.3 × 10-09 ). Eighty-six phenotypes were associated with ADHD-PGS in the European ancestry individuals, including ADHD (OR[95%CIs] = 1.22[1.16-1.29], p = 3.6 × 10-10 ), and TUD (OR[95%CIs] = 1.22[1.19-1.25], p = 2.8 × 10-46 ). We then stratified outcomes by age (ages 0-11, 12-18, 19-25, 26-40, 41-60, and 61-100). Our results suggest that ADHD polygenic scores are associated with ADHD diagnoses early in life and with an increasing number of health conditions throughout the lifespan (even in the absence of ADHD diagnosis). This study reinforces the utility of applying trait-specific PGSs to biobank data, and performing exploratory sensitivity analyses, to probe relationships among clinical conditions.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno por Déficit de Atención con Hiperactividad/genética , Registros Electrónicos de Salud , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética , Fenotipo
4.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261099

RESUMEN

Human genetic studies have implicated more than a hundred genes in Autism Spectrum Disorder (ASD). Understanding how variation in implicated genes influence expression of co-occurring conditions and drug response can inform more effective, personalized approaches for treatment of individuals with ASD. Rapidly translating this information into the clinic requires efficient algorithms to sort through the myriad of genes implicated by rare gene-damaging single nucleotide and copy number variants, and common variation detected in genome-wide association studies (GWAS). To pinpoint genes that are more likely to have clinically relevant variants, we developed a functional annotation pipeline. We defined clinical relevance in this project as any ASD associated gene with evidence indicating a patient may have a complex, co-occurring condition that requires direct intervention (e.g., sleep and gastrointestinal disturbances, attention deficit hyperactivity, anxiety, seizures, depression), or is relevant to drug development and/or approaches to maximizing efficacy and minimizing adverse events (i.e., pharmacogenomics). Starting with a list of all candidate genes implicated in all manifestations of ASD (i.e., idiopathic and syndromic), this pipeline uses databases that represent multiple lines of evidence to identify genes: (1) expressed in the human brain, (2) involved in ASD-relevant biological processes and resulting in analogous phenotypes in mice, (3) whose products are targeted by approved pharmaceutical compounds or possessing pharmacogenetic variation and (4) whose products directly interact with those of genes with variants recommended to be tested for by the American College of Medical Genetics (ACMG). Compared with 1000 gene sets, each with a random selection of human protein coding genes, more genes in the ASD set were annotated for each category evaluated (p ≤ 1.99 × 10-2). Of the 956 ASD-implicated genes in the full set, 18 were flagged based on evidence in all categories. Fewer genes from randomly drawn sets were annotated in all categories (x = 8.02, sd = 2.56, p = 7.75 × 10-4). Notably, none of the prioritized genes are represented among the 59 genes compiled by the ACMG, and 78% had a pathogenic or likely pathogenic variant in ClinVar. Results from this work should rapidly prioritize potentially actionable results from genetic studies and, in turn, inform future work toward clinical decision support for personalized care based on genetic testing.


Asunto(s)
Trastorno del Espectro Autista/genética , Anotación de Secuencia Molecular , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Automatización , Encéfalo/metabolismo , Encéfalo/patología , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Mamíferos/genética , Ratones , Mutación/genética , Fenotipo , Mapeo de Interacción de Proteínas
5.
J Neurosci ; 37(8): 2216-2233, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28130356

RESUMEN

Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes.SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple CaMKII functions, induces synaptic deficits, and causes ASD-related behavioral alterations, providing novel insights into the synaptic mechanisms contributing to ASD.


Asunto(s)
Trastorno del Espectro Autista , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Dendritas/metabolismo , Mutación/genética , Transmisión Sináptica/genética , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/fisiopatología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Células Cultivadas , Cicloheximida/farmacología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Conducta Exploratoria/fisiología , Femenino , Regulación de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo
6.
J Neurosci ; 37(46): 11271-11284, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29038237

RESUMEN

Engagement of integrins by the extracellular matrix initiates signaling cascades that drive a variety of cellular functions, including neuronal migration and axonal pathfinding in the brain. Multiple lines of evidence link the ITGB3 gene encoding the integrin ß3 subunit with the serotonin (5-HT) system, likely via its modulation of the 5-HT transporter (SERT). The ITGB3 coding polymorphism Leu33Pro (rs5918, PlA2) produces hyperactive αvß3 receptors that influence whole-blood 5-HT levels and may influence the risk for autism spectrum disorder (ASD). Using a phenome-wide scan of psychiatric diagnoses, we found significant, male-specific associations between the Pro33 allele and attention-deficit hyperactivity disorder and ASDs. Here, we used knock-in (KI) mice expressing an Itgb3 variant that phenocopies the human Pro33 variant to elucidate the consequences of constitutively enhanced αvß3 signaling to the 5-HT system in the brain. KI mice displayed deficits in multiple behaviors, including anxiety, repetitive, and social behaviors. Anatomical studies revealed a significant decrease in 5-HT synapses in the midbrain, accompanied by decreases in SERT activity and reduced localization of SERTs to integrin adhesion complexes in synapses of KI mice. Inhibition of focal adhesion kinase (FAK) rescued SERT function in synapses of KI mice, demonstrating that constitutive active FAK signaling downstream of the Pro32Pro33 integrin αvß3 suppresses SERT activity. Our studies identify a complex regulation of 5-HT homeostasis and behaviors by integrin αvß3, revealing an important role for integrins in modulating risk for neuropsychiatric disorders.SIGNIFICANCE STATEMENT The integrin ß3 Leu33Pro coding polymorphism has been associated with autism spectrum disorders (ASDs) within a subgroup of patients with elevated blood 5-HT levels, linking integrin ß3, 5-HT, and ASD risk. We capitalized on these interactions to demonstrate that the Pro33 coding variation in the murine integrin ß3 recapitulates the sex-dependent neurochemical and behavioral attributes of ASD. Using state-of-the-art techniques, we show that presynaptic 5-HT function is altered in these mice, and that the localization of 5-HT transporters to specific compartments within the synapse, disrupted by the integrin ß3 Pro33 mutation, is critical for appropriate reuptake of 5-HT. Our studies provide fundamental insight into the genetic network regulating 5-HT neurotransmission in the CNS that is also associated with ASD risk.


Asunto(s)
Encéfalo/fisiología , Mutación con Ganancia de Función/genética , Variación Genética/genética , Integrina beta3/genética , Prolina/genética , Serotonina/genética , Animales , Femenino , Técnicas de Sustitución del Gen/métodos , Humanos , Integrina beta3/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Prolina/metabolismo , Unión Proteica/fisiología , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
7.
Bioinformatics ; 31(2): 187-93, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25270638

RESUMEN

MOTIVATION: The development of cost-effective next-generation sequencing methods has spurred the development of high-throughput bioinformatics tools for detection of sequence variation. With many disparate variant-calling algorithms available, investigators must ask, 'Which method is best for my data?' Machine learning research has shown that so-called ensemble methods that combine the output of multiple models can dramatically improve classifier performance. Here we describe a novel variant-calling approach based on an ensemble of variant-calling algorithms, which we term the Consensus Genotyper for Exome Sequencing (CGES). CGES uses a two-stage voting scheme among four algorithm implementations. While our ensemble method can accept variants generated by any variant-calling algorithm, we used GATK2.8, SAMtools, FreeBayes and Atlas-SNP2 in building CGES because of their performance, widespread adoption and diverse but complementary algorithms. RESULTS: We apply CGES to 132 samples sequenced at the Hudson Alpha Institute for Biotechnology (HAIB, Huntsville, AL) using the Nimblegen Exome Capture and Illumina sequencing technology. Our sample set consisted of 40 complete trios, two families of four, one parent-child duo and two unrelated individuals. CGES yielded the fewest total variant calls (N(CGES) = 139° 897), the highest Ts/Tv ratio (3.02), the lowest Mendelian error rate across all genotypes (0.028%), the highest rediscovery rate from the Exome Variant Server (EVS; 89.3%) and 1000 Genomes (1KG; 84.1%) and the highest positive predictive value (PPV; 96.1%) for a random sample of previously validated de novo variants. We describe these and other quality control (QC) metrics from consensus data and explain how the CGES pipeline can be used to generate call sets of varying quality stringency, including consensus calls present across all four algorithms, calls that are consistent across any three out of four algorithms, calls that are consistent across any two out of four algorithms or a more liberal set of all calls made by any algorithm. AVAILABILITY AND IMPLEMENTATION: To enable accessible, efficient and reproducible analysis, we implement CGES both as a stand-alone command line tool available for download in GitHub and as a set of Galaxy tools and workflows configured to execute on parallel computers. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Trastorno Autístico/genética , Exoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo de Nucleótido Simple/genética , Programas Informáticos , Secuencia de Consenso , Interpretación Estadística de Datos , Pruebas Genéticas , Genotipo , Humanos
8.
Bioinformatics ; 31(9): 1452-9, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25568282

RESUMEN

MOTIVATION: A major focus of current sequencing studies for human genetics is to identify rare variants associated with complex diseases. Aside from reduced power of detecting associated rare variants, controlling for population stratification is particularly challenging for rare variants. Transmission/disequilibrium tests (TDT) based on family designs are robust to population stratification and admixture, and therefore provide an effective approach to rare variant association studies to eliminate spurious associations. To increase power of rare variant association analysis, gene-based collapsing methods become standard approaches for analyzing rare variants. Existing methods that extend this strategy to rare variants in families usually combine TDT statistics at individual variants and therefore lack the flexibility of incorporating other genetic models. RESULTS: In this study, we describe a haplotype-based framework for group-wise TDT (gTDT) that is flexible to encompass a variety of genetic models such as additive, dominant and compound heterozygous (CH) (i.e. recessive) models as well as other complex interactions. Unlike existing methods, gTDT constructs haplotypes by transmission when possible and inherently takes into account the linkage disequilibrium among variants. Through extensive simulations we showed that type I error was correctly controlled for rare variants under all models investigated, and this remained true in the presence of population stratification. Under a variety of genetic models, gTDT showed increased power compared with the single marker TDT. Application of gTDT to an autism exome sequencing data of 118 trios identified potentially interesting candidate genes with CH rare variants. AVAILABILITY AND IMPLEMENTATION: We implemented gTDT in C++ and the source code and the detailed usage are available on the authors' website (https://medschool.vanderbilt.edu/cgg). CONTACT: bingshan.li@vanderbilt.edu or wei.chen@chp.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Estudios de Asociación Genética/métodos , Variación Genética , Haplotipos , Desequilibrio de Ligamiento , Trastorno Autístico/genética , Simulación por Computador , Interpretación Estadística de Datos , Exoma , Humanos , Modelos Genéticos , Análisis de Secuencia de ADN
9.
PLoS Genet ; 9(8): e1003671, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23966865

RESUMEN

De novo mutations affect risk for many diseases and disorders, especially those with early-onset. An example is autism spectrum disorders (ASD). Four recent whole-exome sequencing (WES) studies of ASD families revealed a handful of novel risk genes, based on independent de novo loss-of-function (LoF) mutations falling in the same gene, and found that de novo LoF mutations occurred at a twofold higher rate than expected by chance. However successful these studies were, they used only a small fraction of the data, excluding other types of de novo mutations and inherited rare variants. Moreover, such analyses cannot readily incorporate data from case-control studies. An important research challenge in gene discovery, therefore, is to develop statistical methods that accommodate a broader class of rare variation. We develop methods that can incorporate WES data regarding de novo mutations, inherited variants present, and variants identified within cases and controls. TADA, for Transmission And De novo Association, integrates these data by a gene-based likelihood model involving parameters for allele frequencies and gene-specific penetrances. Inference is based on a Hierarchical Bayes strategy that borrows information across all genes to infer parameters that would be difficult to estimate for individual genes. In addition to theoretical development we validated TADA using realistic simulations mimicking rare, large-effect mutations affecting risk for ASD and show it has dramatically better power than other common methods of analysis. Thus TADA's integration of various kinds of WES data can be a highly effective means of identifying novel risk genes. Indeed, application of TADA to WES data from subjects with ASD and their families, as well as from a study of ASD subjects and controls, revealed several novel and promising ASD candidate genes with strong statistical support.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Variación Genética , Modelos Teóricos , Mutación , Teorema de Bayes , Estudios de Casos y Controles , Exoma , Predisposición Genética a la Enfermedad , Humanos , Funciones de Verosimilitud , Factores de Riesgo , Análisis de Secuencia de ADN
10.
PLoS Genet ; 9(4): e1003443, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23593035

RESUMEN

We report on results from whole-exome sequencing (WES) of 1,039 subjects diagnosed with autism spectrum disorders (ASD) and 870 controls selected from the NIMH repository to be of similar ancestry to cases. The WES data came from two centers using different methods to produce sequence and to call variants from it. Therefore, an initial goal was to ensure the distribution of rare variation was similar for data from different centers. This proved straightforward by filtering called variants by fraction of missing data, read depth, and balance of alternative to reference reads. Results were evaluated using seven samples sequenced at both centers and by results from the association study. Next we addressed how the data and/or results from the centers should be combined. Gene-based analyses of association was an obvious choice, but should statistics for association be combined across centers (meta-analysis) or should data be combined and then analyzed (mega-analysis)? Because of the nature of many gene-based tests, we showed by theory and simulations that mega-analysis has better power than meta-analysis. Finally, before analyzing the data for association, we explored the impact of population structure on rare variant analysis in these data. Like other recent studies, we found evidence that population structure can confound case-control studies by the clustering of rare variants in ancestry space; yet, unlike some recent studies, for these data we found that principal component-based analyses were sufficient to control for ancestry and produce test statistics with appropriate distributions. After using a variety of gene-based tests and both meta- and mega-analysis, we found no new risk genes for ASD in this sample. Our results suggest that standard gene-based tests will require much larger samples of cases and controls before being effective for gene discovery, even for a disorder like ASD.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Exoma , Estudio de Asociación del Genoma Completo , Estudios de Casos y Controles , Niño , Trastornos Generalizados del Desarrollo Infantil/fisiopatología , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Regulación de la Población , Análisis de Secuencia de ADN , Programas Informáticos
11.
Nat Genet ; 39(3): 319-28, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17322880

RESUMEN

Autism spectrum disorders (ASDs) are common, heritable neurodevelopmental conditions. The genetic architecture of ASDs is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASDs by using Affymetrix 10K SNP arrays and 1,181 [corrected] families with at least two affected individuals, performing the largest linkage scan to date while also analyzing copy number variation in these families. Linkage and copy number variation analyses implicate chromosome 11p12-p13 and neurexins, respectively, among other candidate loci. Neurexins team with previously implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for contributing to ASDs.


Asunto(s)
Trastorno Autístico/genética , Aberraciones Cromosómicas , Mapeo Cromosómico , Ligamiento Genético , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Trastorno Autístico/diagnóstico , Familia , Femenino , Variación Genética , Humanos , Escala de Lod , Masculino , Factores de Riesgo
12.
Hum Genet ; 134(2): 191-201, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25432440

RESUMEN

Copy number variation has emerged as an important cause of phenotypic variation, particularly in relation to some complex disorders. Autism spectrum disorder (ASD) is one such disorder, in which evidence is emerging for an etiological role for some rare penetrant de novo and rare inherited copy number variants (CNVs). De novo variation, however, does not always explain the familial nature of ASD, leaving a gap in our knowledge concerning the heritable genetic causes of this disorder. Extended pedigrees, in which several members have ASD, provide an opportunity to investigate inherited genetic risk factors. In this current study, we recruited 19 extended ASD pedigrees, and, using the Illumina HumanOmni2.5 BeadChip, conducted genome-wide CNV interrogation. We found no definitive evidence of an etiological role for segregating CNVs in these pedigrees, and no evidence that linkage signals in these pedigrees are explained by segregating CNVs. However, a small number of putative de novo variants were transmitted from BAP parents to their ASD offspring, and evidence emerged for a rare duplication CNV at 11p13.3 harboring two putative 'developmental/neuropsychiatric' susceptibility gene(s), GSTP1 and NDUFV1.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Cromosomas Humanos Par 11/genética , Duplicación de Gen , Predisposición Genética a la Enfermedad , Gutatión-S-Transferasa pi/genética , NADH Deshidrogenasa/genética , Linaje , Bases de Datos de Ácidos Nucleicos , Conjuntos de Datos como Asunto , Complejo I de Transporte de Electrón , Femenino , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Penetrancia
13.
Am J Med Genet A ; 167A(4): 715-23, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25655306

RESUMEN

Chromosome 15q13.3 recurrent microdeletions are causally associated with a wide range of phenotypes, including autism spectrum disorder (ASD), seizures, intellectual disability, and other psychiatric conditions. Whether the reciprocal microduplication is pathogenic is less certain. CHRNA7, encoding for the alpha7 subunit of the neuronal nicotinic acetylcholine receptor, is considered the likely culprit gene in mediating neurological phenotypes in 15q13.3 deletion cases. To assess if CHRNA7 rare variants confer risk to ASD, we performed copy number variant analysis and Sanger sequencing of the CHRNA7 coding sequence in a sample of 135 ASD cases. Sequence variation in this gene remains largely unexplored, given the existence of a fusion gene, CHRFAM7A, which includes a nearly identical partial duplication of CHRNA7. Hence, attempts to sequence coding exons must distinguish between CHRNA7 and CHRFAM7A, making next-generation sequencing approaches unreliable for this purpose. A CHRNA7 microduplication was detected in a patient with autism and moderate cognitive impairment; while no rare damaging variants were identified in the coding region, we detected rare variants in the promoter region, previously described to functionally reduce transcription. This study represents the first sequence variant analysis of CHRNA7 in a sample of idiopathic autism.


Asunto(s)
Trastorno del Espectro Autista/genética , Receptor Nicotínico de Acetilcolina alfa 7/genética , Adolescente , Estudios de Casos y Controles , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Polimorfismo de Nucleótido Simple
14.
Nature ; 459(7246): 528-33, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19404256

RESUMEN

Autism spectrum disorders (ASDs) represent a group of childhood neurodevelopmental and neuropsychiatric disorders characterized by deficits in verbal communication, impairment of social interaction, and restricted and repetitive patterns of interests and behaviour. To identify common genetic risk factors underlying ASDs, here we present the results of genome-wide association studies on a cohort of 780 families (3,101 subjects) with affected children, and a second cohort of 1,204 affected subjects and 6,491 control subjects, all of whom were of European ancestry. Six single nucleotide polymorphisms between cadherin 10 (CDH10) and cadherin 9 (CDH9)-two genes encoding neuronal cell-adhesion molecules-revealed strong association signals, with the most significant SNP being rs4307059 (P = 3.4 x 10(-8), odds ratio = 1.19). These signals were replicated in two independent cohorts, with combined P values ranging from 7.4 x 10(-8) to 2.1 x 10(-10). Our results implicate neuronal cell-adhesion molecules in the pathogenesis of ASDs, and represent, to our knowledge, the first demonstration of genome-wide significant association of common variants with susceptibility to ASDs.


Asunto(s)
Trastorno Autístico/genética , Cromosomas Humanos Par 5/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Encéfalo/metabolismo , Cadherinas/genética , Estudios de Casos y Controles , Adhesión Celular/genética , Moléculas de Adhesión Celular Neuronal/genética , Estudios de Cohortes , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados
15.
Proc Natl Acad Sci U S A ; 109(14): 5469-74, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22431635

RESUMEN

Fifty years ago, increased whole-blood serotonin levels, or hyperserotonemia, first linked disrupted 5-HT homeostasis to Autism Spectrum Disorders (ASDs). The 5-HT transporter (SERT) gene (SLC6A4) has been associated with whole blood 5-HT levels and ASD susceptibility. Previously, we identified multiple gain-of-function SERT coding variants in children with ASD. Here we establish that transgenic mice expressing the most common of these variants, SERT Ala56, exhibit elevated, p38 MAPK-dependent transporter phosphorylation, enhanced 5-HT clearance rates and hyperserotonemia. These effects are accompanied by altered basal firing of raphe 5-HT neurons, as well as 5HT(1A) and 5HT(2A) receptor hypersensitivity. Strikingly, SERT Ala56 mice display alterations in social function, communication, and repetitive behavior. Our efforts provide strong support for the hypothesis that altered 5-HT homeostasis can impact risk for ASD traits and provide a model with construct and face validity that can support further analysis of ASD mechanisms and potentially novel treatments.


Asunto(s)
Trastorno Autístico/genética , Receptores de Serotonina/fisiología , Serotonina/sangre , Conducta Social , Conducta Estereotipada , Animales , Trastorno Autístico/sangre , Trastorno Autístico/fisiopatología , Modelos Animales de Enfermedad , Homeostasis , Ratones
16.
Proc Natl Acad Sci U S A ; 109(21): 7974-81, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22566635

RESUMEN

We recently reported a deletion of exon 2 of the trimethyllysine hydroxylase epsilon (TMLHE) gene in a proband with autism. TMLHE maps to the X chromosome and encodes the first enzyme in carnitine biosynthesis, 6-N-trimethyllysine dioxygenase. Deletion of exon 2 of TMLHE causes enzyme deficiency, resulting in increased substrate concentration (6-N-trimethyllysine) and decreased product levels (3-hydroxy-6-N-trimethyllysine and γ-butyrobetaine) in plasma and urine. TMLHE deficiency is common in control males (24 in 8,787 or 1 in 366) and was not significantly increased in frequency in probands from simplex autism families (9 in 2,904 or 1 in 323). However, it was 2.82-fold more frequent in probands from male-male multiplex autism families compared with controls (7 in 909 or 1 in 130; P = 0.023). Additionally, six of seven autistic male siblings of probands in male-male multiplex families had the deletion, suggesting that TMLHE deficiency is a risk factor for autism (metaanalysis Z-score = 2.90 and P = 0.0037), although with low penetrance (2-4%). These data suggest that dysregulation of carnitine metabolism may be important in nondysmorphic autism; that abnormalities of carnitine intake, loss, transport, or synthesis may be important in a larger fraction of nondysmorphic autism cases; and that the carnitine pathway may provide a novel target for therapy or prevention of autism.


Asunto(s)
Trastorno Autístico , Carnitina/deficiencia , Cromosomas Humanos X/genética , Genes Ligados a X/genética , Errores Innatos del Metabolismo , Oxigenasas de Función Mixta/genética , Trastorno Autístico/epidemiología , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Carnitina/biosíntesis , Cognición/fisiología , Exones/genética , Eliminación de Gen , Humanos , Masculino , Errores Innatos del Metabolismo/epidemiología , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Oxigenasas de Función Mixta/sangre , Oxigenasas de Función Mixta/orina , Penetrancia , Factores de Riesgo , Hermanos
17.
Mol Pharmacol ; 85(6): 921-31, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24695082

RESUMEN

The plasma-membrane integrin αIIbß3 (CD41/CD61, GPIIbIIIa) is a major functional receptor in platelets during clotting. A common isoform of integrin ß3, Leu33Pro is associated with enhanced platelet function and increased risk for coronary thrombosis and stroke, although these findings remain controversial. To better understand the molecular mechanisms by which this sequence variation modifies platelet function, we produced transgenic knockin mice expressing a Pro32Pro33 integrin ß3. Consistent with reports utilizing human platelets, we found significantly reduced bleeding and clotting times, as well as increased in vivo thrombosis, in Pro32Pro33 homozygous mice. These alterations paralleled increases in platelet attachment and spreading onto fibrinogen resulting from enhanced integrin αIIbß3 function. Activation with protease-activated receptor 4- activating peptide, the main thrombin signaling receptor in mice, showed no significant difference in activation of Pro32Pro33 mice as compared with controls, suggesting that inside-out signaling remains intact. However, under unstimulated conditions, the Pro32Pro33 mutation led to elevated Src phosphorylation, facilitated by increased talin interactions with the ß3 cytoplasmic domain, indicating that the αIIbß3 intracellular domains are primed for activation while the ligand-binding domain remains unchanged. Acute dosing of animals with a Src inhibitor was sufficient to rescue the clotting phenotype in knockin mice to wild-type levels. Together, our data establish that the Pro32Pro33 structural alteration modifies the function of integrin αIIbß3, priming the integrin for outside-in signaling, ultimately leading to hypercoagulability. Furthermore, our data may support a novel approach to antiplatelet therapy by Src inhibition where hemostasis is maintained while reducing risk for cardiovascular disease.


Asunto(s)
Compuestos de Anilina/farmacología , Adhesión Celular/genética , Integrina beta3/genética , Mutación , Nitrilos/farmacología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/fisiología , Prolina/genética , Quinolinas/farmacología , Trombofilia/genética , Familia-src Quinasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN , Humanos , Integrina beta3/química , Ratones , Datos de Secuencia Molecular , Fenotipo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Reacción en Cadena de la Polimerasa , Homología de Secuencia de Aminoácido
18.
Genomics ; 102(4): 270-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23743231

RESUMEN

Two common sources of DNA for whole exome sequencing (WES) are whole blood (WB) and immortalized lymphoblastoid cell line (LCL). However, it is possible that LCLs have a substantially higher rate of mutation than WB, causing concern for their use in sequencing studies. We compared results from paired WB and LCL DNA samples for 16 subjects, using LCLs of low passage number (<5). Using a standard analysis pipeline we detected a large number of discordant genotype calls (approximately 50 per subject) that we segregated into categories of "confidence" based on read-level quality metrics. From these categories and validation by Sanger sequencing, we estimate that the vast majority of the candidate differences were false positives and that our categories were effective in predicting valid sequence differences, including LCLs with putative mosaicism for the non-reference allele (3-4 per exome). These results validate the use of DNA from LCLs of low passage number for exome sequencing.


Asunto(s)
Células Sanguíneas/fisiología , Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Alelos , Línea Celular , Biología Computacional , Genotipo , Humanos , Mosaicismo , Mutación , Reproducibilidad de los Resultados
19.
J Inflamm Res ; 17: 2169-2172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628604

RESUMEN

We believe there are serious problems with a recently published and highly publicized paper entitled "Serotonin reduction in post-acute sequelae of viral infection." The blood centrifugation procedure reportedly used by Wong et al would produce plasma that is substantially (over 95%) depleted of platelets. Given this, their published mean plasma serotonin values of 1.2 uM and 2.4 uM for the control/contrast groups appear to be at least 30 to 60 times too high and should be disregarded. The plasma serotonin values reported for the long COVID and viremia patients also should be disregarded, as should any comparisons to the control/contrast groups. We also note that the plasma serotonin means for the two control/contrast groups are not in good agreement. In the "Discussion" section, Wong et al state that their results tend to support the use of selective serotonin reuptake inhibitors (SSRIs) for the treatment of COVID-19, and they encourage further clinical trials of SSRIs. While they state that, "Our animal models demonstrate that serotonin levels can be restored and memory impairment reversed by precursor supplementation or SSRI treatment", it should be noted that no data are presented showing an increase or restoration in circulating serotonin with SSRI administration. In fact, one would expect a marked decline in platelet serotonin due to SSRIs' effective inhibition of the platelet serotonin transporter. Wong et al hypothesize that problems of long COVID arise from too little peripheral serotonin. However, given the frequent presence of a hyperaggregation state in long COVID, and the known augmenting effects of platelet serotonin on platelet aggregation, it is plausible to suggest that reductions in platelet serotonin might be associated with a lessening of the cardiovascular sequelae of COVID-19.

20.
Hum Mol Genet ; 20(22): 4360-70, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21865298

RESUMEN

Autism is a neurodevelopmental disorder with increasing evidence of heterogeneous genetic etiology including de novo and inherited copy number variants (CNVs). We performed array comparative genomic hybridization using a custom Agilent 1 M oligonucleotide array intended to cover 197 332 unique exons in RefSeq genes; 98% were covered by at least one probe and 95% were covered by three or more probes with the focus on detecting relatively small CNVs that would implicate a single protein-coding gene. The study group included 99 trios from the Simons Simplex Collection. The analysis identified and validated 55 potentially pathogenic CNVs, categorized as de novo autosomal heterozygous, inherited homozygous autosomal, complex autosomal and hemizygous deletions on the X chromosome of probands. Twenty percent (11 of 55) of these CNV calls were rare when compared with the Database of Genomic Variants. Thirty-six percent (20 of 55) of the CNVs were also detected in the same samples in an independent analysis using the 1 M Illumina single-nucleotide polymorphism array. Findings of note included a common and sometimes homozygous 61 bp exonic deletion in SLC38A10, three CNVs found in lymphoblast-derived DNA but not present in whole-blood derived DNA and, most importantly, in a male proband, an exonic deletion of the TMLHE (trimethyllysine hydroxylase epsilon) that encodes the first enzyme in the biosynthesis of carnitine. Data for CNVs present in lymphoblasts but absent in fresh blood DNA suggest that these represent clonal outgrowth of individual B cells with pre-existing somatic mutations rather than artifacts arising in cell culture. GEO accession number GSE23765 (http://www.ncbi.nlm.nih.gov/geo/, date last accessed on 30 August 2011). Genboree accession: http://genboree.org/java-bin/gbrowser.jsp?refSeqId=1868&entryPointId=chr17&from=53496072&to=53694382&isPublic=yes, date last accessed on 30 August 2011.


Asunto(s)
Trastorno Autístico/genética , Hibridación Genómica Comparativa/métodos , Variaciones en el Número de Copia de ADN/genética , Exones/genética , Oxigenasas de Función Mixta/genética , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA