Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 294, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598011

RESUMEN

Understanding the dynamic change in abundance of both fecal and opportunistic waterborne pathogens in urban surface water under different abiotic and biotic factors helps the prediction of microbiological water quality and protection of public health during recreational activities, such as swimming. However, a comprehensive understanding of the interaction among various factors on pathogen behavior in surface water is missing. In this study, the effect of salinity, light, and temperature and the presence of indigenous microbiota, on the decay/persistence of Escherichia coli and Pseudomonas aeruginosa in Rhine River water were tested during 7 days of incubation with varying salinity (0.4, 5.4, 9.4, and 15.4 ppt), with light under a light/dark regime (light/dark) and without light (dark), temperature (3, 12, and 20 °C), and presence/absence of indigenous microbiota. The results demonstrated that light, indigenous microbiota, and temperature significantly impacted the decay of E. coli. Moreover, a significant (p<0.01) four-factor interactive impact of these four environmental conditions on E. coli decay was observed. However, for P. aeruginosa, temperature and indigenous microbiota were two determinate factors on the decay or growth. A significant three-factor interactive impact between indigenous microbiota, temperature, and salinity (p<0.01); indigenous microbiota, light, and temperature (p<0.01); and light, temperature, and salinity (p<0.05) on the decay of P. aeruginosa was found. Due to these interactive effects, caution should be taken when predicting decay/persistence of E. coli and P. aeruginosa in surface water based on a single environmental condition. In addition, the different response of E. coli and P. aeruginosa to the environmental conditions highlights that E. coli monitoring alone underestimates health risks of surface water by non-fecal opportunistic pathogens, such as P. aeruginosa. KEY POINTS: Abiotic and biotic factors interactively affect decay of E. coli and P. aeruginosa E.coli and P.aeruginosa behave significantly different under the given conditions Only E. coli as an indicator underestimates the microbiological water quality.


Asunto(s)
Escherichia coli , Pseudomonas aeruginosa , Ríos , Heces , Agua Dulce
2.
Biodegradation ; 35(3): 281-297, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37439919

RESUMEN

Groundwater is the most important source for drinking water in The Netherlands. Groundwater quality is threatened by the presence of pesticides, and biodegradation is a natural process that can contribute to pesticide removal. Groundwater conditions are oligotrophic and thus biodegradation can be limited by the presence and development of microbial communities capable of biodegrading pesticides. For that reason, bioremediation technologies such as bioaugmentation (BA) can help to enhance pesticide biodegradation. We studied the effect of BA using enriched mixed inocula in two column bioreactors that simulate groundwater systems at naturally occurring redox conditions (iron and sulfate-reducing conditions). Columns were operated for around 800 days, and two BA inoculations (BA1 and BA2) were conducted in each column. Inocula were enriched from different wastewater treatment plants (WWTPs) under different redox-conditions. We observed a temporary effect of BA1, reaching 100% removal efficiency of the pesticide 2,4-D after 100 days in both columns. In the iron-reducing column, 2,4-D removal was in general higher than under sulfate-reducing conditions demonstrating the influence of redox conditions on overall biodegradation. We observed a temporary shift in microbial communities after BA1 that is relatable to the increase in 2,4-D removal efficiency. After BA2 under sulfate-reducing conditions, 2,4-D removal efficiency decreased, but no change in the column microbial communities was observed. The present study demonstrates that BA with a mixed inoculum can be a valuable technique for improving biodegradation in anoxic groundwater systems at different redox-conditions.


Asunto(s)
Agua Subterránea , Plaguicidas , Contaminantes Químicos del Agua , Plaguicidas/metabolismo , Anaerobiosis , Biodegradación Ambiental , Hierro , Sulfatos/metabolismo , Ácido 2,4-Diclorofenoxiacético , Contaminantes Químicos del Agua/metabolismo
3.
Ecotoxicol Environ Saf ; 279: 116510, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810284

RESUMEN

Microplastics and organic micropollutants are two emerging contaminants that interact with each other in environmental and engineered systems. Sorption of organic micropollutants, such as pharmaceuticals, pesticides and industrial compounds, to microplastics can modify their bioavailability and biodegradation. The present study investigated the capacity of ultra-high density polyethylene particles (125 µm in diameter), before and after aging, to sorb 21 organic micropollutants at different environmentally relevant concentration. Furthermore, the biodegradation of these organic micropollutants by a biofilm microbial community growing on the microplastic surface was compared with the biodegradation by a microbial community originating from activated sludge. Among all tested organic micropollutants, propranolol (70%), trimethoprim (25%) and sotalol (15%) were sorbed in the presence of polyethylene particles. Growth of a biofilm on the polyethylene particles had a beneficial effect on the sorption of bromoxynil, caffeine and chloridazon and on the biodegradation of irbesartan, atenolol and benzotriazole. On the other hand, the biofilm limited the sorption of trimethoprim, propranolol, sotalol and benzotriazole and the biodegradation of 2,4-D. These results showed that ultra-high density polyethylene particles can affect both in a positive and negative way for the abiotic and biotic removal of organic micropollutants in wastewater. This project highlights the need for further investigation regarding the interaction between microplastics and organic micropollutants in the aquatic environment.


Asunto(s)
Biodegradación Ambiental , Biopelículas , Microplásticos , Polietileno , Propranolol , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Polietileno/química , Adsorción , Trimetoprim , Atenolol , Triazoles/química , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología
4.
Environ Res ; 216(Pt 1): 114495, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208778

RESUMEN

Antibiotic resistance is a global public health concern. Antibiotic usage in pigs makes swine wastewater (SW) a reservoir for antibiotic resistance genes (ARGs). SW is usually stored and treated in a three-chamber anaerobic pond (3-CAP) in medium and small pig farms in northern China. However, the yet unexplored presence of ARGs in SW during 3-CAP treatment may result in ARGs spreading into the environment if farmers apply SW to farmland as a liquid organic fertilizer. This study investigated the profiles of and changes in ARGs in SW during its treatment in 3-CAP over four seasons and analyzed the correlation between ARGs and bacterial phenotypes, along with the physicochemical parameters of the water. The results revealed that ARG abundance decreased considerably after 3-CAP treatment in April (47%), October (47%), and December (62%) but increased in May (43%) and August (73%). The ARG copies in the influent and other SW samples increased significantly from 107 copies/mL in April to 109 copies/mL in October and were maintained in December. The increase in ARG abundance was not as rapid as the growth of the bacterial population, resulting in lower relative abundance in October and December. Bacterial communities possessed more sul1 and tetM genes, which were also positively correlated with mobile genetic elements. After the 3-CAP treatment, 16% of antibiotics and 60% of heavy metals were removed, and both had a weak correlation with ARGs. Predicted phenotypes showed that gram-positive (G+) and gram-negative (G-) bacteria have different capacities for carrying ARGs. G+ bacteria carry more ARGs than G- bacteria. This study revealed the persistence of ARGs in SW after 3-CAP treatment over different seasons. Applying SW in the proper month will mitigate ARG dissemination to the environment.


Asunto(s)
Antibacterianos , Aguas Residuales , Porcinos , Animales , Aguas Residuales/microbiología , Antibacterianos/farmacología , Estaciones del Año , Genes Bacterianos , Estanques , Anaerobiosis , Farmacorresistencia Microbiana/genética , Bacterias , Fenotipo
5.
World J Microbiol Biotechnol ; 38(12): 240, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36261779

RESUMEN

Pesticides application on agricultural fields results in pesticides being released into the environment, reaching soil, surface water and groundwater. Pesticides fate and transformation in the environment depend on environmental conditions as well as physical, chemical and biological degradation processes. Monitoring pesticides biodegradation in the environment is challenging, considering that traditional indicators, such as changes in pesticides concentration or identification of pesticide metabolites, are not suitable for many pesticides in anaerobic environments. Furthermore, those indicators cannot distinguish between biotic and abiotic pesticide degradation processes. For that reason, the use of molecular tools is important to monitor pesticide biodegradation-related genes or microorganisms in the environment. The development of targeted molecular (e.g., qPCR) tools, although laborious, allowed biodegradation monitoring by targeting the presence and expression of known catabolic genes of popular pesticides. Explorative molecular tools (i.e., metagenomics & metatranscriptomics), while requiring extensive data analysis, proved to have potential for screening the biodegradation potential and activity of more than one compound at the time. The application of molecular tools developed in laboratory and validated under controlled environments, face challenges when applied in the field due to the heterogeneity in pesticides distribution as well as natural environmental differences. However, for monitoring pesticides biodegradation in the field, the use of molecular tools combined with metadata is an important tool for understanding fate and transformation of the different pesticides present in the environment.


Asunto(s)
Agua Subterránea , Plaguicidas , Plaguicidas/metabolismo , Suelo , Agua , Biodegradación Ambiental , Agua Subterránea/química
6.
Biodegradation ; 32(4): 419-433, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33877512

RESUMEN

2,4-Dichlorophenoxyacetic acid (2,4-D) is the third most applied pesticide in Brazil to control broadleaf weeds in crop cultivation and pastures. Due to 2,4-D's high mobility and long half-life under anoxic conditions, this herbicide has high probability for groundwater contamination. Bioremediation is an attractive solution for 2,4-D contaminated anoxic environments, but there is limited understanding of anaerobic 2,4-D biodegradation. In this study, methanogenic enrichment cultures were obtained from Amazonian top soil (0-40 cm) and deep soil (50 -80 cm below ground) that biotransform 2,4-D (5 µM) to 4-chlorophenol and phenol. When these cultures were transferred (10% v/v) to fresh medium containing 40 µM or 160 µM 2,4-D, the rate of 2,4-D degradation decreased, and biotransformation did not proceed beyond 4-chlorophenol and 2,4-dichlorophenol in the top and deep soil cultures, respectively. 16S rRNA gene sequencing and qPCR of a selection of microbes revealed no significant enrichment of known organohalide-respiring bacteria. Furthermore, a member of the genus Cryptanaerobacter was identified as possibly responsible for phenol conversion to benzoate in the top soil inoculated culture. Overall, these results demonstrate the effect of 2,4-D concentration on biodegradation and microbial community composition, which are both important factors when developing pesticide bioremediation technologies.


Asunto(s)
Herbicidas , Contaminantes del Suelo , Ácido 2,4-Diclorofenoxiacético , Biodegradación Ambiental , Brasil , ARN Ribosómico 16S/genética , Suelo , Microbiología del Suelo
7.
Environ Sci Technol ; 51(8): 4576-4584, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28346781

RESUMEN

This study explores ibuprofen (IBP) uptake and transformation in the wetland plant species Phragmites australis and the underlying mechanisms. We grew P. australis in perlite under greenhouse conditions and treated plants with 60 µg/L of IBP. Roots and rhizomes (RR), stems and leaves (SL), and liquid samples were collected during 21 days of exposure. Results show that P. australis can take up, translocate, and degrade IBP. IBP was completely removed from the liquid medium after 21 days with a half-life of 2.1 days. IBP accumulated in RR and was partly translocated to SL. Meanwhile, four intermediates were detected in the plant tissues: hydroxy-IBP, 1,2-dihydroxy-IBP, carboxy-IBP and glucopyranosyloxy-hydroxy-IBP. Cytochrome P450 monooxygenase was involved in the production of the two hydroxy intermediates. We hypothesize that transformation of IBP was first catalyzed by P450, and then by glycosyltransferase, followed by further storage or metabolism in vacuoles or cell walls. No significant phytotoxicity was observed based on relative growth of plants and stress enzyme activities. In conclusion, we demonstrated for the first time that P. australis degrades IBP from water and is therefore a suitable species for application in constructed wetlands to clean wastewater effluents containing IBP and possibly also other micropollutants.


Asunto(s)
Ibuprofeno , Poaceae/metabolismo , Semivida , Aguas Residuales , Humedales
8.
Bull Environ Contam Toxicol ; 99(5): 595-600, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28913582

RESUMEN

Wetlands in the Prairie Pothole Region of North America are integrated with farmland and contain mixtures of herbicide contaminants. Passive nonfacilitated diffusion is how most herbicides can move across plant membranes, making this perhaps an important process by which herbicide contaminants are absorbed by wetland vegetation. Prairie wetlands are dominated by native cattail (Typha latifolia) and hybrid cattail (Typha x glauca). The objective of this batch equilibrium study was to compare glyphosate absorption by the shoots and rhizomes of native versus hybrid cattails. Although it has been previously reported for some pesticides that passive diffusion is greater for rhizome than shoot components, this is the first study to demonstrate that the absorption capacity of rhizomes is species dependent, with the glyphosate absorption being significantly greater for rhizomes than shoots in case of native cattails, but with no significant differences in glyphosate absorption between rhizomes and shoots in case of hybrid cattails. Most importantly, glyphosate absorption by native rhizomes far exceeded that of the absorption occurring for hybrid rhizomes, native shoots and hybrid shoots. Glyphosate has long been used to manage invasive hybrid cattails in wetlands in North America, but hybrid cattail expansions continue to occur. Since our results showed limited glyphosate absorption by hybrid shoots and rhizomes, this lack of sorption may partially explain the poorer ability of glyphosate to control hybrid cattails in wetlands.


Asunto(s)
Glicina/análogos & derivados , Herbicidas/metabolismo , Typhaceae/metabolismo , Humedales , Glicina/metabolismo , Herbicidas/análisis , América del Norte , Rizoma/metabolismo , Glifosato
9.
Environ Sci Technol ; 48(4): 2352-60, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24450862

RESUMEN

While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the compatibility with further bioremediation, a pilot scale treatment at a diesel-contaminated location was performed consisting of two persulfate injection events followed by a single nutrient amendment. Groundwater parameters measured throughout the 225 day experiment showed a significant decrease in pH and an increase in dissolved diesel and organic carbon within the treatment area. Molecular analysis of the microbial community size (16S rRNA gene) and alkane degradation capacity (alkB gene) by qPCR indicated a significant, yet temporary impact; while gene copy numbers initially decreased 1-2 orders of magnitude, they returned to baseline levels within 3 months of the first injection for both targets. Analysis of soil samples with sequential extraction showed irreversible oxidation of metal sulfides, thereby changing subsurface mineralogy and potentially mobilizing Fe, Cu, Pb, and Zn. Together, these results give insight into persulfate application in terms of risks and effective coupling with bioremediation.


Asunto(s)
Bacterias/metabolismo , Contaminantes Ambientales/análisis , Contaminación Ambiental/análisis , Gasolina/microbiología , Suelo/química , Bacterias/genética , Biodegradación Ambiental , Carbono/análisis , Conductividad Eléctrica , Agua Subterránea/microbiología , Hidrocarburos/análisis , Concentración de Iones de Hidrógeno , Sistemas en Línea , Oxidantes/química , Oxidación-Reducción , Proyectos Piloto , Polonia , ARN Ribosómico 16S/genética
10.
Appl Microbiol Biotechnol ; 98(6): 2751-64, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24092007

RESUMEN

To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.


Asunto(s)
Bacterias/clasificación , Biodegradación Ambiental , Biota , Gasolina , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Suelo/química , Bacterias/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
Chemosphere ; 352: 141388, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346507

RESUMEN

Unconventional substrata like activated carbon or clay beads can enhance micropollutant removal in constructed wetlands. However, hydroponic materials widely used in horticulture have not yet been investigated for their potential to remove micropollutants. In addition, potential effect of plant species other than reeds on micropollutant removal has not been sufficiently investigated. Therefore, a nature-based, post-treatment technology called improved vertical flow constructed wetlands (CW) with hydroponic (H) materials (CWH) was designed by employing cocopeat and mineral with ornamental plant species syngonium and periwinkle. A mesocosm CWH system was tested in a climate-controlled greenhouse for 550 days for its potential to remove frequently found micropollutants in wastewater, namely sulfamethoxazole, trimethoprim, diclofenac, erythromycin, carbamazepine, pyrimethanil, tebuconazole, pymetrozine, atrazine and DEET from wastewater effluent. The main focus was to understand the contribution of sorption, microbial degradation and phytoremediation on the removal of those micropollutants. It was found that cocopeat showed a capacity for sorbing micropollutants, ranging between 80 and 99% of the compounds added while less than 10% sorption was observed for mineral wool. Additionally moderate to high biological removal (25-60 µg of compound/kg dry weight of substratum/day) for most of the studied compounds was observed in all the cocopeat biotic groups. Furthermore, it could be stated that plants appear not to be an important factor for micropollutant removal. The observed differences in removal between the cocopeat and mineral wool systems could be explained by the difference in physico-chemical properties of the substrata, where cocopeat has a higher water holding capacity, moisture content, nutrient and organic matter content, and a higher intraparticle porosity and surface area. This study revealed notable removal of persistent and mobile micropollutants in cocopeat CWH, namely carbamazepine (80-86%) and diclofenac (97-100%). These results demonstrate the potential beneficial use of hydroponic materials as substratum in more advanced constructed wetlands designed to remove micropollutants.


Asunto(s)
Compuestos de Calcio , Silicatos , Aguas Residuales , Contaminantes Químicos del Agua , Eliminación de Residuos Líquidos/métodos , Humedales , Hidroponía , Diclofenaco , Contaminantes Químicos del Agua/análisis , Plantas , Carbamazepina
12.
J Hazard Mater ; 468: 133759, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377902

RESUMEN

Swine wastewater (SW) application introduces antibiotic resistance genes (ARGs) into farmland soils. However, ARG attenuation in SW-fertigated soils, especially those influenced by staple crops and soil type, remains unclear. This study investigated twelve soil ARGs and one mobile genetic element (MGE) in sandy loam, loam, and silt loam soils before and after SW application in wheat-planted and unplanted soils. The results revealed an immediate increase in the abundance of ARGs in soil by two orders of magnitude above background levels following SW application. After SW application, the soil total ARG abundance was attenuated, reaching background levels at 54 days; However, more individual ARGs were detected above the detection limit than pre-application. Among the 13 genes, acc(6')-lb, tetM, and tetO tended to persist in the soil during wheat harvest. ARG half-lives were up to four times longer in wheat-planted soils than in bare soils. Wheat planting decreased the persistence of acc(6')-lb, ermB, ermF, and intI2 but increased the persistence of others such as sul1 and sul2. Soil type had no significant impact on ARG and MGE fates. Our findings emphasize the need for strategic SW application and the consideration of crop cultivation effects to mitigate ARG accumulation in farmland soils.


Asunto(s)
Antibacterianos , Suelo , Porcinos , Animales , Antibacterianos/farmacología , Aguas Residuales , Triticum/genética , Genes Bacterianos , Farmacorresistencia Microbiana/genética , Productos Agrícolas/genética , Microbiología del Suelo , Estiércol
13.
Environ Sci Pollut Res Int ; 31(34): 47055-47070, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38985427

RESUMEN

The factors limiting micropollutant biodegradation in the environment and how to stimulate this process have often been investigated. However, little information is available on the capacity of microbial communities to retain micropollutant biodegradation capacity in the absence of micropollutants or to reactivate micropollutant biodegradation in systems with fluctuating micropollutant concentrations. This study investigated how a period of 2 months without the addition of micropollutants and other organic carbon affected micropollutant biodegradation by a micropollutant-degrading microbial community. Stimulation of micropollutant biodegradation was performed by adding different types of dissolved organic carbon (DOC)-extracted from natural sources and acetate-increasing 10 × the micropollutant concentration, and inoculating with activated sludge. The results show that the capacity to biodegrade 3 micropollutants was permanently lost. However, the biodegradation activity of 2,4-D, antipyrine, chloridazon, and its metabolites restarted when these micropollutants were re-added to the community. Threshold concentrations similar to those obtained before the period of no substrate addition were achieved, but biodegradation rates were lower for some compounds. Through the addition of high acetate concentrations (108 mg-C/L), gabapentin biodegradation activity was regained, but 2,4-D biodegradation capacity was lost. An increase of bentazon concentration from 50 to 500 µg/L was necessary for biodegradation to be reactivated. These results provide initial insights into the longevity of micropollutant biodegradation capacity in the absence of the substance and strategies for reactivating micropollutant biodegrading communities.


Asunto(s)
Biodegradación Ambiental , Contaminantes Químicos del Agua/metabolismo , Aguas del Alcantarillado
14.
Sci Total Environ ; 945: 173932, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38880133

RESUMEN

Bio-electrochemical systems (BESs) have recently been proposed as an efficient treatment technology to remove organic micropollutants from water treatment plants. In this study, we aimed to differentiate between sorption, electrochemical transport/degradation, and biodegradation. Using electro-active microorganisms and electrodes, we investigated organic micropollutant removal at environmentally relevant concentrations, clarifying the roles of sorption and electrochemical and biological degradation. The role of anodic biofilms on the removal of 10 relevant organic micropollutants was studied by performing separate sorption experiments on carbon-based electrodes (graphite felt, graphite rod, graphite granules, and granular activated carbon) and electrochemical degradation experiments at two different electrode potentials (-0.3 and 0 V). Granular activated carbon showed the highest sorption of micropollutants; applying a potential to graphite felt electrodes increased organic micropollutant removal. Removal efficiencies >80 % were obtained for all micropollutants at high anode potentials (+0.955 V), indicating that the studied compounds were more susceptible to oxidation than to reduction. All organic micropollutants showed removal when under bio-electrochemical conditions, ranging from low (e.g. metformin, 9.3 %) to exceptionally high removal efficiencies (e.g. sulfamethoxazole, 99.5 %). The lower removal observed under bio-electrochemical conditions when compared to only electrochemical conditions indicated that sorption to the electrode is key to guarantee high electrochemical degradation. The detection of transformation products of chloridazon and metformin indicated that (bio)-electrochemical degradation occurred. This study confirms that BES can treat some organic micropollutants through several mechanisms, which merits further investigation.


Asunto(s)
Biodegradación Ambiental , Técnicas Electroquímicas , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Biopelículas , Electrodos , Purificación del Agua/métodos , Adsorción
15.
Sci Total Environ ; 928: 172339, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608893

RESUMEN

The availability of suitable electron donors and acceptors limits micropollutant natural attenuation in oligotrophic groundwater. This study investigated how electron donors with different biodegradability (humics, dextran, acetate, and ammonium), and different oxygen concentrations affect the biodegradation of 15 micropollutants (initial concentration of each micropollutant = 50 µg/L) in simulated nitrate reducing aquifers. Tests mimicking nitrate reducing field conditions showed no micropollutant biodegradation, even with electron donor amendment. However, 2,4-dichlorophenoxyacetic acid and mecoprop were biodegraded under (micro)aerobic conditions with and without electron donor addition. The highest 2,4-dichlorophenoxyacetic acid and mecoprop biodegradation rates and removal efficiencies were obtained under fully aerobic conditions with amendment of an easily biodegradable electron donor. Under microaerobic conditions, however, amendment with easily biodegradable dissolved organic carbon (DOC) inhibited micropollutant biodegradation due to competition between micropollutants and DOC for the limited oxygen available. Microbial community composition was dictated by electron acceptor availability and electron donor amendment, not by micropollutant biodegradation. Low microbial community richness and diversity led to the absence of biodegradation of the other 13 micropollutants (such as bentazon, chloridazon, and carbamazepine). Finally, adaptation and potential growth of biofilms interactively determined the location of the micropollutant removal zone relative to the point of amendment. This study provides new insight on how to stimulate in situ micropollutant biodegradation to remediate oligotrophic groundwaters as well as possible limitations of this process.


Asunto(s)
Biodegradación Ambiental , Agua Subterránea , Nitratos , Oxígeno , Contaminantes Químicos del Agua , Agua Subterránea/química , Agua Subterránea/microbiología , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Oxígeno/metabolismo , Electrones , Ácido 2,4-Diclorofenoxiacético/metabolismo
16.
Appl Environ Microbiol ; 79(2): 619-30, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23144139

RESUMEN

Microbial community composition and diversity at a diesel-contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the interrelationships among microbial community composition, pollution level, and soil geochemical and physical properties. To this end, 26 soil samples from four matrix types with various geochemical characteristics and contaminant concentrations were investigated. The presence of diesel contamination significantly impacted microbial community composition and diversity, regardless of the soil matrix type. Clean samples showed higher diversity than contaminated samples (P < 0.001). Bacterial phyla with high relative abundances in all samples included Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, and Chloroflexi. High relative abundances of Archaea, specifically of the phylum Euryarchaeota, were observed in contaminated samples. Redundancy analysis indicated that increased relative abundances of the phyla Chloroflexi, Firmicutes, and Euryarchaeota correlated with the presence of contamination. Shifts in the chemical composition of diesel constituents across the site and the abundance of specific operational taxonomic units (OTUs; defined using a 97% sequence identity threshold) in contaminated samples together suggest that natural attenuation of contamination has occurred. OTUs with sequence similarity to strictly anaerobic Anaerolineae within the Chloroflexi, as well as to Methanosaeta of the phylum Euryarchaeota, were detected. Anaerolineae and Methanosaeta are known to be associated with anaerobic degradation of oil-related compounds; therefore, their presence suggests that natural attenuation has occurred under anoxic conditions. This research underscores the usefulness of next-generation sequencing techniques both to understand the ecological impact of contamination and to identify potential molecular proxies for detection of natural attenuation.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Biota , Gasolina , Microbiología del Suelo , Contaminantes del Suelo , Archaea/genética , Bacterias/genética , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Datos de Secuencia Molecular , Filogenia , ARN de Archaea/genética , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
17.
Biodegradation ; 24(4): 487-98, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23242513

RESUMEN

While bioremediation of total petroleum hydrocarbons (TPH) is in general a robust technique, heterogeneity in terms of contaminant and environmental characteristics can impact the extent of biodegradation. The current study investigates the implications of different soil matrix types (anthropogenic fill layer, peat, clay, and sand) and bioavailability on bioremediation of an aged diesel contamination from a heterogeneous site. In addition to an uncontaminated sample for each soil type, samples representing two levels of contamination (high and low) were also used; initial TPH concentrations varied between 1.6 and 26.6 g TPH/kg and bioavailability between 36 and 100 %. While significant biodegradation occurred during 100 days of incubation under biostimulating conditions (64.4-100 % remediation efficiency), low bioavailability restricted full biodegradation, yielding a residual TPH concentration. Respiration levels, as well as the abundance of alkB, encoding mono-oxygenases pivotal for hydrocarbon metabolism, were positively correlated with TPH degradation, demonstrating their usefulness as a proxy for hydrocarbon biodegradation. However, absolute respiration and alkB presence were dependent on soil matrix type, indicating the sensitivity of results to initial environmental conditions. Through investigating biodegradation potential across a heterogeneous site, this research illuminates the interplay between soil matrix type, bioavailability, and bioremediation and the implications of these parameters for the effectiveness of an in situ treatment.


Asunto(s)
Bacterias/metabolismo , Gasolina/microbiología , Hidrocarburos/metabolismo , Contaminantes del Suelo/metabolismo , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Gasolina/análisis , Oxigenasas/genética , Oxigenasas/metabolismo , Suelo/química
18.
Sci Total Environ ; 897: 165233, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37394071

RESUMEN

Micropollutant biodegradation is selected by the interplay among environmental conditions and microbial community composition. This study investigated how different electron acceptors, and different inocula with varying microbial diversity, pre-exposed to distinct redox conditions and micropollutants, affect micropollutant biodegradation. Four tested inocula comprised of agricultural soil (Soil), sediment from a ditch in an agricultural field (Ditch), activated sludge from a municipal WWTP (Mun AS), and activated sludge from an industrial WWTP (Ind AS). Removal of 16 micropollutants was investigated for each inoculum under aerobic, nitrate reducing, iron reducing, sulfate reducing, and methanogenic conditions. Micropollutant biodegradation was highest under aerobic conditions with removal of 12 micropollutants. Most micropollutants were biodegraded by Soil (n = 11) and Mun AS inocula (n = 10). A positive correlation was observed between inoculum community richness and the number of different micropollutants a microbial community initially degraded. The redox conditions to which a microbial community had been exposed appeared to positively affect micropollutant biodegradation performance more than pre-exposure to micropollutants. Additionally, depletion of the organic carbon present in the inocula resulted in lower micropollutant biodegradation and overall microbial activities, suggesting that i) an additional carbon source is needed to promote micropollutant biodegradation; and ii) overall microbial activity can be a good indirect indicator for micropollutant biodegradation activity. These results could help to develop novel micropollutant removal strategies.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Aguas Residuales , Suelo , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Oxidación-Reducción , Carbono
19.
Ambio ; 52(1): 195-209, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36001251

RESUMEN

Canals and canalized rivers form a major part of surface water systems in European delta cities and societal ambitions to use these waters increase. This is the first assessment of how suitability of these waters can improve for three important uses: transportation, thermal energy extraction (TEE) and recreation. We assess suitability with Suitability Indices (SIs) and identify which alterations in the water system are needed to improve SI scores in Amsterdam, The Netherlands, and Ghent, Belgium. The results show spatial variability in suitability scores. Current suitability for transportation is low (SI score = 1) to excellent (SI score = 4), for TEE fair (SI score = 2) to excellent (SI score = 4), and suitability for recreation is low (SI score = 1). Suitability could improve by enlarging specific waterway dimensions, increasing discharge and clarity, and by enhancing microbiological water quality. The same methodology can be applied to optimize designs for new water bodies and for more water uses.


Asunto(s)
Monitoreo del Ambiente , Ríos , Ríos/microbiología , Ciudades , Monitoreo del Ambiente/métodos , Recreación , Calidad del Agua
20.
Water Res ; 241: 120146, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270951

RESUMEN

Rapid sand filters (RSFs) have shown potential for removing organic micropollutants (OMPs) from groundwater. However, the abiotic removal mechanisms are not well understood. In this study, we collect sand from two field RSFs that are operated in series. The sand from the primary filter abiotically removes 87.5% of salicylic acid, 81.4% of paracetamol, and 80.2% of benzotriazole, while the sand from the secondary filter only removes paracetamol (84.6%). The field collected sand is coated by a blend of iron oxides (FeOx) and manganese oxides (MnOx) combined with organic matter, phosphate, and calcium. FeOx adsorbs salicylic acid via bonding of carboxyl group with FeOx. The desorption of salicylic acid from field sand indicates that salicylic acid is not oxidized by FeOx. MnOx adsorbs paracetamol through electrostatic interactions, and further transforms it into p-benzoquinone imine through hydrolysis-oxidation. FeOx significantly adsorbs organic matter, calcium, and phosphate, which in turn influences OMP removal. Organic matter on field sand surfaces limits OMP removal by blocking sorption sites on the oxides. However, calcium and phosphate on field sand support benzotriazole removal via surface complexation and hydrogen bonding. This paper provides further insight into the abiotic removal mechanisms of OMPs in field RSFs.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Hierro , Manganeso , Calcio , Acetaminofén , Filtración , Contaminantes Químicos del Agua/análisis , Óxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA