Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-33906706

RESUMEN

Three strains (YZ01T, YZ02 and YZ03) of Gram-stain-positive, facultatively anaerobic rods were isolated from the forestomach contents collected from a captive male proboscis monkey (Nasalis larvatus) at Yokohama Zoo in Japan. Phylogenetic analysis of the 16S rRNA gene sequences revealed that these strains belonged to the genus Lactobacillus. Based on the sequence similarity of the 16S rRNA gene, Lactobacillus delbrueckii subsp. indicus JCM 15610T was the closest phylogenetic neighbour to YZ01T. Sequence analyses of two partial concatenated housekeeping genes, the RNA polymerase alpha subunit (rpoA) and phenylalanyl-tRNA synthase alpha subunit (pheS) also indicated that the novel strains belonged to the genus Lactobacillus. The average nucleotide identity and digital DNA-DNA hybridization (dDDH) between L. delbrueckii subsp. indicus and YZ01T were 85.9 and 31.4 %, respectively. The phylogenetic tree based on the whole genomic data of strains YZ01T, YZ02 and YZ03 suggested that these three strains formed a single monophyletic cluster in the genus Lactobacillus, indicating that it belonged to a new species. The DNA G+C content of strain YZ01T was 51.6 mol%. The major fatty acids were C16 : 0 and C18 : 1 ω9c. Therefore, based on phylogenetic, phenotypic and physiological evidence, strains YZ01T, YZ02 and YZ03 represent a novel species of the genus Lactobacillus, for which the name Lactobacillus nasalidis sp. nov. is proposed with the type strain YZ01T (=JCM 33769T=DSM 110539T).


Asunto(s)
Lactobacillus/clasificación , Filogenia , Presbytini/microbiología , Estómago/microbiología , Animales , Animales de Zoológico/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/genética , Ácidos Grasos/química , Genes Bacterianos , Japón , Lactobacillus/aislamiento & purificación , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
2.
Proc Biol Sci ; 286(1904): 20190884, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31161904

RESUMEN

Bitter taste enables the detection of potentially harmful substances and is mediated by bitter taste receptors, TAS2Rs, in vertebrates. Few antagonists and inverse agonists of TAS2Rs have been identified, especially natural compounds. TAS2R16s in humans, apes and Old World monkeys (Catarrhini, Anthropoidea) recognize ß-glucoside analogues as specific agonists. Here, we investigated responses of TAS2R16 to ß-glucosides in non-anthropoid primates, namely lemurs (Lemuriformes, Strepsirrhini). Salicin acted as an agonist on lemur TAS2R16. Arbutin acted as an agonist in the ring-tailed lemur ( Lemur catta) but as an inverse agonist in black lemur ( Eulemur macaco) and black-and-white ruffed lemur ( Varecia variegata). We identified a strepsirrhine-specific amino acid substitution responsible for the inverse agonism of arbutin. In a food preference test, salicin bitterness was inhibited by arbutin in the black lemur. Structural modelling revealed this locus was important for a rearrangement of the intracellular end of transmembrane helix 7 (TM7). Accordingly, arbutin is the first known natural inverse agonist of TAS2Rs, contributing to our understanding of receptor-ligand interactions and the molecular basis of the unique feeding habit diversification in lemurs. Furthermore, the identification of a causal point mutation suggests that TAS2R can acquire functional changes according to feeding habits and environmental conditions.


Asunto(s)
Arbutina/química , Lemur/genética , Mutación Puntual , Receptores Acoplados a Proteínas G/genética , Gusto/genética , Sustitución de Aminoácidos , Animales , Conducta Alimentaria , Preferencias Alimentarias , Lemur/fisiología , Receptores Acoplados a Proteínas G/agonistas
3.
Biol Lett ; 13(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28123110

RESUMEN

Bitterness perception in mammals is mostly directed at natural toxins that induce innate avoidance behaviours. Bitter taste is mediated by the G protein-coupled receptor TAS2R, which is located in taste cell membranes. One of the best-studied bitter taste receptors is TAS2R38, which recognizes phenylthiocarbamide (PTC). Here we investigate the sensitivities of TAS2R38 receptors to PTC in four species of leaf-eating monkeys (subfamily Colobinae). Compared with macaque monkeys (subfamily Cercopithecinae), colobines have lower sensitivities to PTC in behavioural and in vitro functional analyses. We identified four non-synonymous mutations in colobine TAS2R38 that are responsible for the decreased sensitivity of the TAS2R38 receptor to PTC observed in colobines compared with macaques. These results suggest that tolerance to bitterness in colobines evolved from an ancestor that was sensitive to bitterness as an adaptation to eating leaves.


Asunto(s)
Colobinae/fisiología , Macaca/fisiología , Feniltiourea , Receptores Acoplados a Proteínas G/genética , Gusto/genética , Animales , Evolución Biológica , Colobinae/genética , Células HEK293 , Humanos , Macaca/genética , Malus , Análisis de Secuencia de Proteína
4.
BMC Evol Biol ; 16(1): 208, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27733116

RESUMEN

BACKGROUND: New World monkeys (NWMs) are unique in that they exhibit remarkable interspecific variation in color vision and feeding behavior, making them an excellent model for studying sensory ecology. However, it is largely unknown whether non-visual senses co-vary with feeding ecology, especially gustation, which is expected to be indispensable in food selection. Bitter taste, which is mediated by bitter taste receptors (TAS2Rs) in the tongue, helps organisms avoid ingesting potentially toxic substances in food. In this study, we compared the ligand sensitivities of the TAS2Rs of five species of NWMs by heterologous expression in HEK293T cells and calcium imaging. RESULTS: We found that TAS2R1 and TAS2R4 orthologs differ in sensitivity among the NWM species for colchicine and camphor, respectively. We then reconstructed the ancestral receptors of NWM TAS2R1 and TAS2R4, measured the evolutionary shift in ligand sensitivity, and identified the amino acid replacement at residue 62 as responsible for the high sensitivity of marmoset TAS2R4 to colchicine. CONCLUSIONS: Our results provide a basis for understanding the differences in feeding ecology among NWMs with respect to bitter taste.


Asunto(s)
Platirrinos/fisiología , Receptores Acoplados a Proteínas G/fisiología , Gusto , Animales , Evolución Molecular , Células HEK293 , Humanos , Filogenia , Platirrinos/clasificación , Polimorfismo de Nucleótido Simple , Receptores Acoplados a Proteínas G/química , Especificidad de la Especie
5.
Mol Biol Evol ; 31(8): 2018-31, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24758778

RESUMEN

Genome studies of mammals in the superorder Euarchontoglires (a clade that comprises the orders Primates, Dermoptera, Scandentia, Rodentia, and Lagomorpha) are important for understanding the biological features of humans, particularly studies of medical model animals such as macaques and mice. Furthermore, the dynamic ecoevolutionary signatures of Euarchontoglires genomes may be discovered because many species in this clade are characterized by their successful adaptive radiation to various ecological niches. In this study, we investigated the evolutionary trajectory of bitter taste receptor genes (TAS2Rs) in 28 Euarchontoglires species based on homology searches of 39 whole-genome assemblies. The Euarchontoglires species possessed variable numbers of intact TAS2Rs, which ranged from 16 to 40, and their last common ancestor had at least 26 intact TAS2Rs. The gene tree showed that there have been at least seven lineage-specific events involving massive gene duplications. Gene duplications were particularly evident in the ancestral branches of anthropoids (the anthropoid cluster), which may have promoted the adaptive evolution of anthropoid characteristics, such as a trade-off between olfaction and other senses and the development of herbivorous characteristics. Subsequent whole-gene deletions of anthropoid cluster TAS2Rs in hominoid species suggest ongoing ectopic homologous recombination in the anthropoid cluster. These findings provide insights into the roles of adaptive sensory evolution in various ecological niches and important clues related to the molecular mechanisms that underlie taste diversity in Euarchontoglires mammalian species, including humans.


Asunto(s)
Genómica/métodos , Mamíferos/clasificación , Mamíferos/genética , Receptores Acoplados a Proteínas G/genética , Gusto , Animales , Evolución Molecular , Eliminación de Gen , Duplicación de Gen , Humanos , Filogenia , Homología de Secuencia , Especificidad de la Especie
6.
Microorganisms ; 11(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37374963

RESUMEN

Previously, we isolated a novel lactic acid bacteria species (Lactobacillus nasalidis) from the fresh forestomach contents of a captive proboscis monkey (Nasalis larvatus) in a Japanese zoo. In this study, we isolated two strains of L. nasalidis from the freeze-dried forestomach contents of a wild proboscis monkey inhabiting a riverine forest in Malaysia. The samples had been stored for more than six years. Phenotypic analysis showed that strains isolated from the wild individual had more diverse sugar utilization and lower salt tolerance than strains previously isolated from the captive counterpart. These phenotypic differences are most likely induced by feeding conditions; wild individuals consume a wide variety of natural food, unlike their zoo-raised counterparts that consume formula feed with sodium sufficiency. Since 16s rRNA sequences of L. nasalidis were detected in the previously created 16S rRNA libraries of wild, provisioned, and captive proboscis monkeys in Malaysia and Japan, L. nasalidis may be an essential bacterium of the foregut microbial community of the proboscis monkey. The currently established method for the isolation of gut bacteria from freeze-dried samples under storage will be applicable to many already-stored precious samples.

7.
Primates ; 61(3): 485-494, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32006126

RESUMEN

Bitter taste perception enables the detection of potentially toxic molecules and thus evokes avoidance behavior in vertebrates. It is mediated by bitter taste receptors, TAS2Rs. One of the best-studied TAS2R is TAS2R38. Phenylthiocarbamide (PTC) perception and TAS2R38 receptors vary across primate species, and this variation may be related to variation in dietary preferences. In particular, we previously found that the low sensitivity of TAS2R38s in Asian colobines likely evolved as an adaptation to their leaf-eating behavior. However, it remains unclear whether this low PTC sensitivity is a general characteristic of the subfamily Colobinae, a primate group that feeds predominantly on leaves. We performed genetic analyses, functional assays with mutant proteins, and behavioral analyses to evaluate the general characteristics of TAS2R38 in colobines. We found that PTC sensitivity is lower in TAS2R38s of African colobines than in TAS2R38s of omnivorous macaques. Furthermore, two amino acids shared between Asian and African colobines were responsible for low sensitivity to PTC, suggesting that the last common ancestor of extant colobines had this phenotype. We also detected amino acid differences between TAS2R38s in Asian and African colobines, indicating that they evolved independently after the separation of these groups.


Asunto(s)
Colobinae/genética , Evolución Molecular , Feniltiourea/metabolismo , Receptores Acoplados a Proteínas G/genética , Percepción del Gusto/genética , Animales , Femenino , Masculino
8.
Ecol Evol ; 9(18): 10387-10403, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31624557

RESUMEN

ABSTRACT: Bitter perception is mediated by G protein-coupled receptors TAS2Rs and plays an important role in avoiding the ingestion of toxins by inducing innate avoidance behavior in mammals. One of the best-studied TAS2Rs is TAS2R38, which mediates the perception of the bitterness of synthetic phenylthiocarbamide (PTC). Previous studies of TAS2R38 have suggested that geographical separation enabled the independent divergence of bitter taste perception. The functional divergence of TAS2R38 in allopatric species has not been evaluated. We characterized the function of TAS2R38 in four allopatric species of Sulawesi macaques on Sulawesi Island. We found variation in PTC taste perception both within and across species. In most cases, TAS2R38 was sensitive to PTC, with functional divergence among species. We observed different truncated TAS2R38s that were not responsive to PTC in each species of Macaca nigra and M. nigrescens due to premature stop codons. Some variants of intact TAS2R38 with an amino acid substitution showed low sensitivity to PTC in M. tonkeana. Similarly, this intact TAS2R38 with PTC-low sensitivity has also been found in humans. We detected a shared haplotype in all four Sulawesi macaques, which may be the ancestral haplotype of Sulawesi macaques. In addition to shared haplotypes among Sulawesi macaques, other TAS2R38 haplotypes were species-specific. These results implied that the variation in TAS2R38 might be shaped by geographical patterns and local adaptation. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.908jf3r.

9.
Primates ; 59(6): 523-530, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30191350

RESUMEN

For many primates, sweet taste is palatable and is an indicator that the food contains carbohydrates, such as sugars and starches, as energy sources. However, we have found that Asian colobine monkeys (lutungs and langurs) have low sensitivity to various natural sugars. Sweet tastes are recognized when compounds bind to the sweet taste receptor TAS1R2/TAS1R3 in the oral cavity; accordingly, we conducted a functional assay using a heterologous expression system to evaluate the responses of Javan lutung (Trachypithecus auratus) TAS1R2/TAS1R3 to various natural sugars. We found that Javan lutung TAS1R2/TAS1R3 did not respond to natural sugars such as sucrose and maltose. We also conducted a behavioral experiment using the silvery lutung (Trachypithecus cristatus) and Hanuman langur (Semnopithecus entellus) by measuring the consumption of sugar-flavored jellies. Consistent with the functional assay results for TAS1R2/TAS1R3, these Asian colobine monkeys showed no preference for sucrose or maltose jellies. These results demonstrate that sweet taste sensitivity to natural sugars is low in Asian colobine monkeys, and this may be related to the specific feeding habits of colobine monkeys.


Asunto(s)
Colobinae/fisiología , Conducta Alimentaria/fisiología , Azúcares , Papilas Gustativas/metabolismo , Gusto , Animales , Asia , Conducta Animal , Maltosa/metabolismo , Boca , Sacarosa/metabolismo
10.
Biophys Physicobiol ; 13: 165-171, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27924271

RESUMEN

In mammals, bitter taste is mediated by TAS2Rs, which belong to the family of seven transmembrane G protein-coupled receptors. Since TAS2Rs are directly involved in the interaction between mammals and their dietary sources, it is likely that these genes evolved to reflect species-specific diets during mammalian evolution. Here, we analyzed the amino acids responsible for the difference in sensitivities of TAS2R16s of various primates using a cultured cell expression system. We found that the sensitivity of TAS2R16 varied due to several amino acid residues. Mutation of amino acid residues at E86T, L247M, and V260F in human and langur TAS2R16 for mimicking the macaque TAS2R16 decreased the sensitivity of the receptor in an additive manner, which suggests its contribution to the potency of salicin, possibly via direct interaction. However, mutation of amino acid residues 125 and 133 in human TAS2R16, which are situated in helix 4, to the macaque sequence increased the sensitivity of the receptor. These results suggest the possibility that bitter taste sensitivities evolved independently by replacing specific amino acid residues of TAS2Rs in different primate species to adapt to species-specific food.

11.
PLoS One ; 10(7): e0132016, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26201026

RESUMEN

Bitter taste receptors (TAS2R proteins) allow mammals to detect and avoid ingestion of toxins in food. Thus, TAS2Rs play an important role in food choice and are subject to complex natural selection pressures. In our previous study, we examined nucleotide variation in TAS2R38, a gene expressing bitter taste receptor for phenylthiocarbamide (PTC), in 333 Japanese macaques (Macaca fuscata) from 9 local populations in Japan. We identified a PTC "non-taster" TAS2R38 allele in Japanese macaques that was caused by a loss of the start codon. This PTC non-taster allele was only found in a limited local population (the Kii area), at a frequency of 29%. In this study, we confirmed that this allele was present in only the Kii population by analyzing an additional 264 individuals from eight new populations. Using cellular and behavioral experiments, we found that this allele lost its receptor function for perceiving PTC. The nucleotide sequences of the allele including flanking regions (of about 10 kb) from 23 chromosomes were identical, suggesting that a non-taster allele arose and expanded in the Kii population during the last 13,000 years. Genetic analyses of non-coding regions in Kii individuals and neighboring populations indicated that the high allele frequency in the Kii population could not be explained by demographic history, suggesting that positive selection resulted in a rapid increase in PTC non-tasters in the Kii population. The loss-of-function that occurred at the TAS2R38 locus presumably provided a fitness advantage to Japanese macaques in the Kii population. Because TAS2R38 ligands are often found in plants, this functional change in fitness is perhaps related to feeding habit specificity. These findings should provide valuable insights for elucidating adaptive evolutionary changes with respect to various environments in wild mammals.


Asunto(s)
Codón Iniciador , Macaca/genética , Polimorfismo de Nucleótido Simple , Receptores Acoplados a Proteínas G/genética , Gusto/genética , Animales , Cromosomas de los Mamíferos , Evolución Molecular , Variación Genética , Japón , Macaca/metabolismo , Feniltiourea/farmacología , Selección Genética , Gusto/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA