Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nucleic Acids Res ; 51(2): 935-951, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36610787

RESUMEN

Eukaryotic life benefits from-and ofttimes critically relies upon-the de novo biosynthesis and supply of vitamins and micronutrients from bacteria. The micronutrient queuosine (Q), derived from diet and/or the gut microbiome, is used as a source of the nucleobase queuine, which once incorporated into the anticodon of tRNA contributes to translational efficiency and accuracy. Here, we report high-resolution, substrate-bound crystal structures of the Sphaerobacter thermophilus queuine salvage protein Qng1 (formerly DUF2419) and of its human ortholog QNG1 (C9orf64), which together with biochemical and genetic evidence demonstrate its function as the hydrolase releasing queuine from queuosine-5'-monophosphate as the biological substrate. We also show that QNG1 is highly expressed in the liver, with implications for Q salvage and recycling. The essential role of this family of hydrolases in supplying queuine in eukaryotes places it at the nexus of numerous (patho)physiological processes associated with queuine deficiency, including altered metabolism, proliferation, differentiation and cancer progression.


Asunto(s)
Chloroflexi , Glicósido Hidrolasas , Nucleósido Q , Humanos , Guanina/metabolismo , Micronutrientes , Nucleósido Q/metabolismo , Proteínas , ARN de Transferencia/metabolismo , Glicósido Hidrolasas/química , Chloroflexi/enzimología
2.
Nucleic Acids Res ; 51(8): 3836-3854, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36928176

RESUMEN

The modified nucleosides 2'-deoxy-7-cyano- and 2'-deoxy-7-amido-7-deazaguanosine (dPreQ0 and dADG, respectively) recently discovered in DNA are the products of the bacterial queuosine tRNA modification pathway and the dpd gene cluster, the latter of which encodes proteins that comprise the elaborate Dpd restriction-modification system present in diverse bacteria. Recent genetic studies implicated the dpdA, dpdB and dpdC genes as encoding proteins necessary for DNA modification, with dpdD-dpdK contributing to the restriction phenotype. Here we report the in vitro reconstitution of the Dpd modification machinery from Salmonella enterica serovar Montevideo, the elucidation of the roles of each protein and the X-ray crystal structure of DpdA supported by small-angle X-ray scattering analysis of DpdA and DpdB, the former bound to DNA. While the homology of DpdA with the tRNA-dependent tRNA-guanine transglycosylase enzymes (TGT) in the queuosine pathway suggested a similar transglycosylase activity responsible for the exchange of a guanine base in the DNA for 7-cyano-7-deazaguanine (preQ0), we demonstrate an unexpected ATPase activity in DpdB necessary for insertion of preQ0 into DNA, and identify several catalytically essential active site residues in DpdA involved in the transglycosylation reaction. Further, we identify a modification site for DpdA activity and demonstrate that DpdC functions independently of DpdA/B in converting preQ0-modified DNA to ADG-modified DNA.


Asunto(s)
ADN , Nucleósido Q , ADN/genética , Guanina/metabolismo , ARN de Transferencia/metabolismo , Pentosiltransferasa/metabolismo
3.
RNA ; 26(9): 1094-1103, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32385138

RESUMEN

N6-threonylcarbamoyl adenosine (t6A) is a nucleoside modification found in all kingdoms of life at position 37 of tRNAs decoding ANN codons, which functions in part to restrict translation initiation to AUG and suppress frameshifting at tandem ANN codons. In Bacteria the proteins TsaB, TsaC (or C2), TsaD, and TsaE, comprise the biosynthetic apparatus responsible for t6A formation. TsaC(C2) and TsaD harbor the relevant active sites, with TsaC(C2) catalyzing the formation of the intermediate threonylcarbamoyladenosine monophosphate (TC-AMP) from ATP, threonine, and CO2, and TsaD catalyzing the transfer of the threonylcarbamoyl moiety from TC-AMP to A37 of substrate tRNAs. Several related modified nucleosides, including hydroxynorvalylcarbamoyl adenosine (hn6A), have been identified in select organisms, but nothing is known about their biosynthesis. To better understand the mechanism and structural constraints on t6A formation, and to determine if related modified nucleosides are formed via parallel biosynthetic pathways or the t6A pathway, we carried out biochemical and biophysical investigations of the t6A systems from E. coli and T. maritima to address these questions. Using kinetic assays of TsaC(C2), tRNA modification assays, and NMR, our data demonstrate that TsaC(C2) exhibit relaxed substrate specificity, producing a variety of TC-AMP analogs that can differ in both the identity of the amino acid and nucleotide component, whereas TsaD displays more stringent specificity, but efficiently produces hn6A in E. coli and T. maritima tRNA. Thus, in organisms that contain modifications such as hn6A in their tRNA, we conclude that their origin is due to formation via the t6A pathway.


Asunto(s)
Adenosina/análogos & derivados , Vías Biosintéticas/genética , Nucleósidos/genética , ARN de Transferencia/genética , Adenosina/genética , Adenosina Monofosfato/genética , Adenosina Trifosfato/genética , Aminoácidos/genética , Dominio Catalítico/genética , Escherichia coli/genética , Conformación Proteica , Especificidad por Sustrato/genética , Thermotoga maritima/genética , Treonina/genética
4.
Nucleic Acids Res ; 48(18): 10383-10396, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32941607

RESUMEN

In the constant evolutionary battle against mobile genetic elements (MGEs), bacteria have developed several defense mechanisms, some of which target the incoming, foreign nucleic acids e.g. restriction-modification (R-M) or CRISPR-Cas systems. Some of these MGEs, including bacteriophages, have in turn evolved different strategies to evade these hurdles. It was recently shown that the siphophage CAjan and 180 other viruses use 7-deazaguanine modifications in their DNA to evade bacterial R-M systems. Among others, phage CAjan genome contains a gene coding for a DNA-modifying homolog of a tRNA-deazapurine modification enzyme, together with four 7-cyano-7-deazaguanine synthesis genes. Using the CRISPR-Cas9 genome editing tool combined with the Nanopore Sequencing (ONT) we showed that the 7-deazaguanine modification in the CAjan genome is dependent on phage-encoded genes. The modification is also site-specific and is found mainly in two separate DNA sequence contexts: GA and GGC. Homology modeling of the modifying enzyme DpdA provides insight into its probable DNA binding surface and general mode of DNA recognition.


Asunto(s)
Bacteriófagos/genética , ADN/genética , Motivos de Nucleótidos/genética , Pirimidinonas/farmacología , Pirroles/farmacología , Bacteriófagos/efectos de los fármacos , Secuencia de Bases/efectos de los fármacos , Sistemas CRISPR-Cas/genética , ADN/efectos de los fármacos , Enzimas de Restricción-Modificación del ADN/efectos de los fármacos , Escherichia coli/virología , Edición Génica , Guanina/análogos & derivados , Guanina/farmacología , Humanos , Secuenciación de Nanoporos , Motivos de Nucleótidos/efectos de los fármacos , Siphoviridae/genética
5.
Proc Natl Acad Sci U S A ; 116(38): 19126-19135, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31481610

RESUMEN

Queuosine (Q) is a complex tRNA modification widespread in eukaryotes and bacteria that contributes to the efficiency and accuracy of protein synthesis. Eukaryotes are not capable of Q synthesis and rely on salvage of the queuine base (q) as a Q precursor. While many bacteria are capable of Q de novo synthesis, salvage of the prokaryotic Q precursors preQ0 and preQ1 also occurs. With the exception of Escherichia coli YhhQ, shown to transport preQ0 and preQ1, the enzymes and transporters involved in Q salvage and recycling have not been well described. We discovered and characterized 2 Q salvage pathways present in many pathogenic and commensal bacteria. The first, found in the intracellular pathogen Chlamydia trachomatis, uses YhhQ and tRNA guanine transglycosylase (TGT) homologs that have changed substrate specificities to directly salvage q, mimicking the eukaryotic pathway. The second, found in bacteria from the gut flora such as Clostridioides difficile, salvages preQ1 from q through an unprecedented reaction catalyzed by a newly defined subgroup of the radical-SAM enzyme family. The source of q can be external through transport by members of the energy-coupling factor (ECF) family or internal through hydrolysis of Q by a dedicated nucleosidase. This work reinforces the concept that hosts and members of their associated microbiota compete for the salvage of Q precursors micronutrients.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Chlamydia/metabolismo , Chlamydia trachomatis/metabolismo , Clostridioides difficile/metabolismo , Infecciones por Clostridium/metabolismo , Guanina/análogos & derivados , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/crecimiento & desarrollo , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/microbiología , Guanina/metabolismo , Humanos , Pentosiltransferasa/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Transducción de Señal , Especificidad por Sustrato
6.
Nucleic Acids Res ; 47(12): 6551-6567, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31114923

RESUMEN

The universally conserved N6-threonylcarbamoyladenosine (t6A) modification of tRNA is essential for translational fidelity. In bacteria, t6A biosynthesis starts with the TsaC/TsaC2-catalyzed synthesis of the intermediate threonylcarbamoyl adenylate (TC-AMP), followed by transfer of the threonylcarbamoyl (TC) moiety to adenine-37 of tRNA by the TC-transfer complex comprised of TsaB, TsaD and TsaE subunits and possessing an ATPase activity required for multi-turnover of the t6A cycle. We report a 2.5-Å crystal structure of the T. maritima TC-transfer complex (TmTsaB2D2E2) bound to Mg2+-ATP in the ATPase site, and substrate analog carboxy-AMP in the TC-transfer site. Site directed mutagenesis results show that residues in the conserved Switch I and Switch II motifs of TsaE mediate the ATP hydrolysis-driven reactivation/reset step of the t6A cycle. Further, SAXS analysis of the TmTsaB2D2-tRNA complex in solution reveals bound tRNA lodged in the TsaE binding cavity, confirming our previous biochemical data. Based on the crystal structure and molecular docking of TC-AMP and adenine-37 in the TC-transfer site, we propose a model for the mechanism of TC transfer by this universal biosynthetic system.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Bacterianas/química , ARN de Transferencia/metabolismo , Adenosina/biosíntesis , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Modelos Moleculares , Mutagénesis , Conformación Proteica , ARN de Transferencia/química , Thermotoga maritima
7.
Bioorg Med Chem Lett ; 30(2): 126818, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31771800

RESUMEN

GTP cyclohydrolase (GCYH-I) is an enzyme in the folate biosynthesis pathway that has not been previously exploited as an antibiotic target, although several pathogens including N. gonorrhoeae use a form of the enzyme GCYH-IB that is structurally distinct from the human homologue GCYH-IA. A comparison of the crystal structures of GCYH-IA and -IB with the nM inhibitor 8-oxo-GTP bound shows that the active site of GCYH-IB is larger and differently shaped. Based on this structural information, we designed and synthesized a small set of 8-oxo-G derivatives with ether linkages at O6 and O8 expected to displace water molecules from the expanded active site of GCYH-IB. The most potent of these compounds, G3, is selective for GCYH-IB, supporting the premise that potent and selective inhibitors of GCYH-IB could constitute a new class of small molecule antibiotics.


Asunto(s)
Antibacterianos/química , GTP Ciclohidrolasa/química , Guanosina/antagonistas & inhibidores , Antibacterianos/uso terapéutico , Guanosina/análogos & derivados , Humanos , Estructura Molecular , Relación Estructura-Actividad
8.
Nucleic Acids Res ; 46(3): 1395-1411, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29309633

RESUMEN

The universal N(6)-threonylcarbamoyladenosine (t6A) modification at position 37 of ANN-decoding tRNAs is central to translational fidelity. In bacteria, t6A biosynthesis is catalyzed by the proteins TsaB, TsaC/TsaC2, TsaD and TsaE. Despite intense research, the molecular mechanisms underlying t6A biosynthesis are poorly understood. Here, we report biochemical and biophysical studies of the t6A biosynthesis system from Thermotoga maritima. Small angle X-ray scattering analysis reveals a symmetric 2:2 stoichiometric complex of TsaB and TsaD (TsaB2D2), as well as 2:2:2 complex (TsaB2D2E2), in which TsaB acts as a dimerization module, similar to the role of Pcc1 in the archaeal system. The TsaB2D2 complex is the minimal platform for the binding of one tRNA molecule, which can then accommodate a single TsaE subunit. Kinetic data demonstrate that TsaB2D2 alone, and a TsaB2D2E1 complex with TsaE mutants deficient in adenosine triphosphatase (ATPase) activity, can catalyze only a single cycle of t6A synthesis, while gel shift experiments provide evidence that the role of TsaE-catalyzed ATP hydrolysis occurs after the release of product tRNA. Based on these results, we propose a model for t6A biosynthesis in bacteria.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Bacterianas/genética , Ligasas/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Thermotoga maritima/enzimología , Adenosina/biosíntesis , Adenosina/química , Adenosina/genética , Adenosina Trifosfatasas/deficiencia , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Codón , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ligasas/química , Ligasas/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Thermotoga maritima/genética
9.
Biochem J ; 475(20): 3221-3238, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30249606

RESUMEN

Mutations in isocitrate dehydrogenase 1 (IDH1) drive most low-grade gliomas and secondary glioblastomas and many chondrosarcomas and acute myeloid leukemia cases. Most tumor-relevant IDH1 mutations are deficient in the normal oxidization of isocitrate to α-ketoglutarate (αKG), but gain the neomorphic activity of reducing αKG to D-2-hydroxyglutarate (D2HG), which drives tumorigenesis. We found previously that IDH1 mutants exhibit one of two reactivities: deficient αKG and moderate D2HG production (including commonly observed R132H and R132C) or moderate αKG and high D2HG production (R132Q). Here, we identify a third type of reactivity, deficient αKG and high D2HG production (R132L). We show that R132Q IDH1 has unique structural features and distinct reactivities towards mutant IDH1 inhibitors. Biochemical and cell-based assays demonstrate that while most tumor-relevant mutations were effectively inhibited by mutant IDH1 inhibitors, R132Q IDH1 had up to a 16 300-fold increase in IC50 versus R132H IDH1. Only compounds that inhibited wild-type (WT) IDH1 were effective against R132Q. This suggests that patients with a R132Q mutation may have a poor response to mutant IDH1 therapies. Molecular dynamics simulations revealed that near the NADP+/NADPH-binding site in R132Q IDH1, a pair of α-helices switches between conformations that are more wild-type-like or more mutant-like, highlighting mechanisms for preserved WT activity. Dihedral angle changes in the dimer interface and buried surface area charges highlight possible mechanisms for loss of inhibitor affinity against R132Q. This work provides a platform for predicting a patient's therapeutic response and identifies a potential resistance mutation that may arise upon treatment with mutant IDH inhibitors.


Asunto(s)
Carcinogénesis/genética , Carcinogénesis/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Mutación/fisiología , Sitios de Unión/fisiología , Células HEK293 , Células HeLa , Humanos , Isocitrato Deshidrogenasa/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
10.
Biochem J ; 474(6): 1017-1039, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28126741

RESUMEN

Guanosine 5'-triphosphate (GTP) cyclohydrolase-I (GCYH-I) catalyzes the first step in folic acid biosynthesis in bacteria and plants, biopterin biosynthesis in mammals, and the biosynthesis of 7-deazaguanosine-modified tRNA nucleosides in bacteria and archaea. The type IB GCYH (GCYH-IB) is a prokaryotic-specific enzyme found in many pathogens. GCYH-IB is structurally distinct from the canonical type IA GCYH involved in biopterin biosynthesis in humans and animals, and thus is of interest as a potential antibacterial drug target. We report kinetic and inhibition data of Neisseria gonorrhoeae GCYH-IB and two high-resolution crystal structures of the enzyme; one in complex with the reaction intermediate analog and competitive inhibitor 8-oxoguanosine 5'-triphosphate (8-oxo-GTP), and one with a tris(hydroxymethyl)aminomethane molecule bound in the active site and mimicking another reaction intermediate. Comparison with the type IA enzyme bound to 8-oxo-GTP (guanosine 5'-triphosphate) reveals an inverted mode of binding of the inhibitor ribosyl moiety and, together with site-directed mutagenesis data, shows that the two enzymes utilize different strategies for catalysis. Notably, the inhibitor interacts with a conserved active-site Cys149, and this residue is S-nitrosylated in the structures. This is the first structural characterization of a biologically S-nitrosylated bacterial protein. Mutagenesis and biochemical analyses demonstrate that Cys149 is essential for the cyclohydrolase reaction, and S-nitrosylation maintains enzyme activity, suggesting a potential role of the S-nitrosothiol in catalysis.


Asunto(s)
Proteínas Bacterianas/química , GTP Ciclohidrolasa/química , Guanosina Trifosfato/análogos & derivados , Neisseria gonorrhoeae/química , Trometamina/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Escherichia coli/genética , Escherichia coli/metabolismo , GTP Ciclohidrolasa/antagonistas & inhibidores , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/metabolismo , Expresión Génica , Guanosina Trifosfato/química , Cinética , Modelos Moleculares , Mutación , Neisseria gonorrhoeae/enzimología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Nitrosotioles/química , Especificidad por Sustrato
11.
Proteins ; 85(1): 103-116, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27802572

RESUMEN

The tunneling-fold (T-fold) structural superfamily has emerged as a versatile protein scaffold of diverse catalytic activities. This is especially evident in the pathways to the 7-deazaguanosine modified nucleosides of tRNA queuosine and archaeosine. Four members of the T-fold superfamily have been confirmed in these pathways and here we report the crystal structure of a fifth enzyme; the recently discovered amidinotransferase QueF-Like (QueF-L), responsible for the final step in the biosynthesis of archaeosine in the D-loop of tRNA in a subset of Crenarchaeota. QueF-L catalyzes the conversion of the nitrile group of the 7-cyano-7-deazaguanine (preQ0 ) base of preQ0 -modified tRNA to a formamidino group. The structure, determined in the presence of preQ0 , reveals a symmetric T-fold homodecamer of two head-to-head facing pentameric subunits, with 10 active sites at the inter-monomer interfaces. Bound preQ0 forms a stable covalent thioimide bond with a conserved active site cysteine similar to the intermediate previously observed in the nitrile reductase QueF. Despite distinct catalytic functions, phylogenetic distributions, and only 19% sequence identity, the two enzymes share a common preQ0 binding pocket, and likely a common mechanism of thioimide formation. However, due to tight twisting of its decamer, QueF-L lacks the NADPH binding site present in QueF. A large positively charged molecular surface and a docking model suggest simultaneous binding of multiple tRNA molecules and structure-specific recognition of the D-loop by a surface groove. The structure sheds light on the mechanism of nitrile amidation, and the evolution of diverse chemistries in a common fold. Proteins 2016; 85:103-116. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Amidinotransferasas/química , Proteínas Arqueales/química , Guanosina/análogos & derivados , Pirimidinonas/química , Pyrobaculum/enzimología , Pirroles/química , Procesamiento Postranscripcional del ARN , Amidinotransferasas/genética , Amidinotransferasas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Guanosina/química , Guanosina/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Pirimidinonas/metabolismo , Pyrobaculum/genética , Pirroles/metabolismo , ARN de Archaea/química , ARN de Archaea/genética , ARN de Archaea/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
12.
J Biol Chem ; 287(36): 30560-70, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22787148

RESUMEN

The enzyme QueF catalyzes the reduction of the nitrile group of 7-cyano-7-deazaguanine (preQ(0)) to 7-aminomethyl-7-deazaguanine (preQ(1)), the only nitrile reduction reaction known in biology. We describe here two crystal structures of Bacillus subtilis QueF, one of the wild-type enzyme in complex with the substrate preQ(0), trapped as a covalent thioimide, a putative intermediate in the reaction, and the second of the C55A mutant in complex with the substrate preQ(0) bound noncovalently. The QueF enzyme forms an asymmetric tunnel-fold homodecamer of two head-to-head facing pentameric subunits, harboring 10 active sites at the intersubunit interfaces. In both structures, a preQ(0) molecule is bound at eight sites, and in the wild-type enzyme, it forms a thioimide covalent linkage to the catalytic residue Cys-55. Both structural and transient kinetic data show that preQ(0) binding, not thioimide formation, induces a large conformational change in and closure of the active site. Based on these data, we propose a mechanism for the activation of the Cys-55 nucleophile and subsequent hydride transfer.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Nitrilos/química , Oxidorreductasas/química , Sustitución de Aminoácidos , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación Missense , Nitrilos/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
13.
RNA ; 17(9): 1678-87, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21775474

RESUMEN

The post-transcriptional nucleoside modifications of tRNA's anticodon domain form the loop structure and dynamics required for effective and accurate recognition of synonymous codons. The N(6)-threonylcarbamoyladenosine modification at position 37 (t(6)A(37)), 3'-adjacent to the anticodon, of many tRNA species in all organisms ensures the accurate recognition of ANN codons by increasing codon affinity, enhancing ribosome binding, and maintaining the reading frame. However, biosynthesis of this complex modification is only partially understood. The synthesis requires ATP, free threonine, a single carbon source for the carbamoyl, and an enzyme yet to be identified. Recently, the universal protein family Sua5/YciO/YrdC was associated with t(6)A(37) biosynthesis. To further investigate the role of YrdC in t(6)A(37) biosynthesis, the interaction of the Escherichia coli YrdC with a heptadecamer anticodon stem and loop of lysine tRNA (ASL(Lys)(UUU)) was examined. YrdC bound the unmodified ASL(Lys)(UUU) with high affinity compared with the t(6)A(37)-modified ASL(Lys)(UUU) (K(d) = 0.27 ± 0.20 µM and 1.36 ± 0.39 µM, respectively). YrdC also demonstrated specificity toward the unmodified versus modified anticodon pentamer UUUUA and toward threonine and ATP. The protein did not significantly alter the ASL architecture, nor was it able to base flip A(37), as determined by NMR, circular dichroism, and fluorescence of 2-aminopuine at position 37. Thus, current data support the hypothesis that YrdC, with many of the properties of a putative threonylcarbamoyl transferase, most likely functions as a component of a heteromultimeric protein complex for t(6)A(37) biosynthesis.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , ARN de Transferencia/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Adenosina/genética , Adenosina Trifosfato/metabolismo , Anticodón , Emparejamiento Base , Dicroismo Circular/métodos , Codón , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorescencia , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Resonancia Magnética Nuclear Biomolecular/métodos , Procesamiento Postranscripcional del ARN , ARN Bacteriano/genética , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Treonina/genética , Treonina/metabolismo
14.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187591

RESUMEN

Machine learning-based platforms are currently revolutionizing many fields of molecular biology including structure prediction for monomers or complexes, predicting the consequences of mutations, or predicting the functions of proteins. However, these platforms use training sets based on currently available knowledge and, in essence, are not built to discover novelty. Hence, claims of discovering novel functions for protein families using artificial intelligence should be carefully dissected, as the dangers of overpredictions are real as we show in a detailed analysis of the prediction made by Kim et al 1 on the function of the YciO protein in the model organism Escherichia coli .

15.
J Pharm Pharm Sci ; 15(3): 420-32, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22974790

RESUMEN

PURPOSE: The extent of palmitate uptake by hepatocytes is dependent upon the surface charge of the extracellular binding protein. Specifically, hepatocyte uptake is greater when palmitate is bound to cationic binding proteins than when it is bound to anionic proteins. To further understand the role of protein surface charge on the uptake process of protein-bound ligands, we examined the rate of transfer of fluorescent anthroyloxy palmitic acid (AOPA) in the presence of anionic and cationic extracellular proteins to model membranes containing different surface charged groups. METHOD: AOPA transfer rate in the presence of bovine serum albumin (ALB; isoelectric point pI = 4.8-5.0) or modified ALB (ALBe; pI = 7.0-7.5) to negative, positive and neutral lipid vesicles was investigated using a fluorescence resonance energy transfer assay. RESULTS: The rate of AOPA transfer from both proteins was decreased when ionic strength was increased; directly dependent on the concentration of acceptor lipid vesicles; and was affected by both the lipid membrane surface charge and protein-bound concentration. CONCLUSION: The data support the notion that AOPA transfer from binding proteins to lipid membranes occurred through two concomitant processes, aqueous diffusion of the unbound ligand (diffusion-mediated process) and a collisional interaction between the protein-ligand complex and acceptor membrane. The contribution of diffusional mediated transfer to the overall uptake process was determined to be 3 to 4 times less than the contribution of a collisional interaction. This study strengthened the hypothesis that charged amino acid residues on proteins are important for effective collisional interaction between protein-ligand complexes and cell membranes through which more free ligand could be supplied for the uptake process.


Asunto(s)
Ácidos Grasos/química , Fosfolípidos/química , Albúmina Sérica Bovina/química , Transporte Biológico , Difusión , Sistemas de Liberación de Medicamentos , Concentración Osmolar
16.
Comput Struct Biotechnol J ; 20: 721-732, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35140890

RESUMEN

Tailed phages are viruses that infect bacteria and are the most abundant biological entities on Earth. Their ecological, evolutionary, and biogeochemical roles in the planet stem from their genomic diversity. Known tailed phage genomes range from 10 to 735 kilobase pairs thanks to the size variability of the protective protein capsids that store them. However, the role of tailed phage capsids' diversity in ecosystems is unclear. A fundamental gap is the difficulty of associating genomic information with viral capsids in the environment. To address this problem, here, we introduce a computational approach to predict the capsid architecture (T-number) of tailed phages using the sequence of a single gene-the major capsid protein. This approach relies on an allometric model that relates the genome length and capsid architecture of tailed phages. This allometric model was applied to isolated phage genomes to generate a library that associated major capsid proteins and putative capsid architectures. This library was used to train machine learning methods, and the most computationally scalable model investigated (random forest) was applied to human gut metagenomes. Compared to isolated phages, the analysis of gut data reveals a large abundance of mid-sized (T = 7) capsids, as expected, followed by a relatively large frequency of jumbo-like tailed phage capsids (T ≥ 25) and small capsids (T = 4) that have been under-sampled. We discussed how to increase the method's accuracy and how to extend the approach to other viruses. The computational pipeline introduced here opens the doors to monitor the ongoing evolution and selection of viral capsids across ecosystems.

17.
J Biol Chem ; 285(17): 12706-13, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20129918

RESUMEN

The presence of the 7-deazaguanosine derivative archaeosine (G(+)) at position 15 in tRNA is one of the diagnostic molecular characteristics of the Archaea. The biosynthesis of this modified nucleoside is especially complex, involving the initial production of 7-cyano-7-deazaguanine (preQ(0)), an advanced precursor that is produced in a tRNA-independent portion of the biosynthesis, followed by its insertion into the tRNA by the enzyme tRNA-guanine transglycosylase (arcTGT), which replaces the target guanine base yielding preQ(0)-tRNA. The enzymes responsible for the biosynthesis of preQ(0) were recently identified, but the enzyme(s) catalyzing the conversion of preQ(0)-tRNA to G(+)-tRNA have remained elusive. Using a comparative genomics approach, we identified a protein family implicated in the late stages of archaeosine biosynthesis. Notably, this family is a paralog of arcTGT and is generally annotated as TgtA2. Structure-based alignments comparing arcTGT and TgtA2 reveal that TgtA2 lacks key arcTGT catalytic residues and contains an additional module. We constructed a Haloferax volcanii DeltatgtA2 derivative and demonstrated that tRNA from this strain lacks G(+) and instead accumulates preQ(0). We also cloned the corresponding gene from Methanocaldococcus jannaschii (mj1022) and characterized the purified recombinant enzyme. Recombinant MjTgtA2 was shown to convert preQ(0)-tRNA to G(+)-tRNA using several nitrogen sources and to do so in an ATP-independent process. This is the only example of the conversion of a nitrile to a formamidine known in biology and represents a new class of amidinotransferase chemistry.


Asunto(s)
Amidinotransferasas/metabolismo , Proteínas Arqueales/metabolismo , Haloferax volcanii/enzimología , ARN de Archaea/metabolismo , ARN de Transferencia/metabolismo , Amidinotransferasas/química , Amidinotransferasas/genética , Amidinotransferasas/aislamiento & purificación , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Guanosina/análogos & derivados , Guanosina/genética , Guanosina/metabolismo , Haloferax volcanii/genética , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , ARN de Archaea/química , ARN de Archaea/genética , ARN de Transferencia/química , ARN de Transferencia/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína
18.
Nucleic Acids Res ; 37(9): 2894-909, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19287007

RESUMEN

Threonylcarbamoyladenosine (t(6)A) is a universal modification found at position 37 of ANN decoding tRNAs, which imparts a unique structure to the anticodon loop enhancing its binding to ribosomes in vitro. Using a combination of bioinformatic, genetic, structural and biochemical approaches, the universal protein family YrdC/Sua5 (COG0009) was shown to be involved in the biosynthesis of this hypermodified base. Contradictory reports on the essentiality of both the yrdC wild-type gene of Escherichia coli and the SUA5 wild-type gene of Saccharomyces cerevisiae led us to reconstruct null alleles for both genes and prove that yrdC is essential in E. coli, whereas SUA5 is dispensable in yeast but results in severe growth phenotypes. Structural and biochemical analyses revealed that the E. coli YrdC protein binds ATP and preferentially binds RNA(Thr) lacking only the t(6)A modification. This work lays the foundation for elucidating the function of a protein family found in every sequenced genome to date and understanding the role of t(6)A in vivo.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , ARN de Transferencia/química , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenosina/biosíntesis , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Genes Esenciales , Genómica , Datos de Secuencia Molecular , ARN de Transferencia/metabolismo , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo
19.
J Bacteriol ; 191(22): 6936-49, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19767425

RESUMEN

GTP cyclohydrolase I (GCYH-I) is an essential Zn(2+)-dependent enzyme that catalyzes the first step of the de novo folate biosynthetic pathway in bacteria and plants, the 7-deazapurine biosynthetic pathway in Bacteria and Archaea, and the biopterin pathway in mammals. We recently reported the discovery of a new prokaryotic-specific GCYH-I (GCYH-IB) that displays no sequence identity to the canonical enzyme and is present in approximately 25% of bacteria, the majority of which lack the canonical GCYH-I (renamed GCYH-IA). Genomic and genetic analyses indicate that in those organisms possessing both enzymes, e.g., Bacillus subtilis, GCYH-IA and -IB are functionally redundant, but differentially expressed. Whereas GCYH-IA is constitutively expressed, GCYH-IB is expressed only under Zn(2+)-limiting conditions. These observations are consistent with the hypothesis that GCYH-IB functions to allow folate biosynthesis during Zn(2+) starvation. Here, we present biochemical and structural data showing that bacterial GCYH-IB, like GCYH-IA, belongs to the tunneling-fold (T-fold) superfamily. However, the GCYH-IA and -IB enzymes exhibit significant differences in global structure and active-site architecture. While GCYH-IA is a unimodular, homodecameric, Zn(2+)-dependent enzyme, GCYH-IB is a bimodular, homotetrameric enzyme activated by a variety of divalent cations. The structure of GCYH-IB and the broad metal dependence exhibited by this enzyme further underscore the mechanistic plasticity that is emerging for the T-fold superfamily. Notably, while humans possess the canonical GCYH-IA enzyme, many clinically important human pathogens possess only the GCYH-IB enzyme, suggesting that this enzyme is a potential new molecular target for antibacterial development.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Ácido Fólico/biosíntesis , GTP Ciclohidrolasa/química , GTP Ciclohidrolasa/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Biología Computacional , Cristalografía por Rayos X , GTP Ciclohidrolasa/genética , Manganeso/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
20.
Biomolecules ; 7(1)2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28300774

RESUMEN

QueF enzymes catalyze the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of the nitrile group of 7-cyano-7-deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1) in the biosynthetic pathway to the tRNA modified nucleoside queuosine. The QueF-catalyzed reaction includes formation of a covalent thioimide intermediate with a conserved active site cysteine that is prone to oxidation in vivo. Here, we report the crystal structure of a mutant of Bacillus subtilis QueF, which reveals an unanticipated intramolecular disulfide formed between the catalytic Cys55 and a conserved Cys99 located near the active site. This structure is more symmetric than the substrate-bound structure and exhibits major rearrangement of the loops responsible for substrate binding. Mutation of Cys99 to Ala/Ser does not compromise enzyme activity, indicating that the disulfide does not play a catalytic role. Peroxide-induced inactivation of the wild-type enzyme is reversible with thioredoxin, while such inactivation of the Cys99Ala/Ser mutants is irreversible, consistent with protection of Cys55 from irreversible oxidation by disulfide formation with Cys99. Conservation of the cysteine pair, and the reported in vivo interaction of QueF with the thioredoxin-like hydroperoxide reductase AhpC in Escherichia coli suggest that regulation by the thioredoxin disulfide-thiol exchange system may constitute a general mechanism for protection of QueF from oxidative stress in vivo.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Disulfuros/metabolismo , Nucleósido Q/biosíntesis , Proteínas Bacterianas/química , Biocatálisis , Vías Biosintéticas , Secuencia Conservada , Cristalografía por Rayos X , Cisteína/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Filogenia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA