Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 19(11): 1212-1223, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30323343

RESUMEN

Activation of innate immunity and deposition of blood-derived fibrin in the central nervous system (CNS) occur in autoimmune and neurodegenerative diseases, including multiple sclerosis (MS) and Alzheimer's disease (AD). However, the mechanisms that link disruption of the blood-brain barrier (BBB) to neurodegeneration are poorly understood, and exploration of fibrin as a therapeutic target has been limited by its beneficial clotting functions. Here we report the generation of monoclonal antibody 5B8, targeted against the cryptic fibrin epitope γ377-395, to selectively inhibit fibrin-induced inflammation and oxidative stress without interfering with clotting. 5B8 suppressed fibrin-induced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and the expression of proinflammatory genes. In animal models of MS and AD, 5B8 entered the CNS and bound to parenchymal fibrin, and its therapeutic administration reduced the activation of innate immunity and neurodegeneration. Thus, fibrin-targeting immunotherapy inhibited autoimmunity- and amyloid-driven neurotoxicity and might have clinical benefit without globally suppressing innate immunity or interfering with coagulation in diverse neurological diseases.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Fibrinógeno/antagonistas & inhibidores , Enfermedades Neurodegenerativas/inmunología , Animales , Epítopos , Humanos , Inflamación/inmunología , Ratones , Ratas
2.
J Neurochem ; 168(5): 899-909, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38299375

RESUMEN

Cofilactin rods (CARs), which are 1:1 aggregates of cofilin-1 and actin, lead to neurite loss in ischemic stroke and other disorders. The biochemical pathways driving CAR formation are well-established, but how these pathways are engaged under ischemic conditions is less clear. Brain ischemia produces both ATP depletion and glutamate excitotoxicity, both of which have been shown to drive CAR formation in other settings. Here, we show that CARs are formed in cultured neurons exposed to ischemia-like conditions: oxygen-glucose deprivation (OGD), glutamate, or oxidative stress. Of these conditions, only OGD produced significant ATP depletion, showing that ATP depletion is not required for CAR formation. Moreover, the OGD-induced CAR formation was blocked by the glutamate receptor antagonists MK-801 and kynurenic acid; the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors GSK2795039 and apocynin; as well as an ROS scavenger. The findings identify a biochemical pathway leading from OGD to CAR formation in which the glutamate release induced by energy failure leads to activation of neuronal glutamate receptors, which in turn activates NADPH oxidase to generate oxidative stress and CARs.


Asunto(s)
Metabolismo Energético , Ácido Glutámico , Neuronas , Animales , Células Cultivadas , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Ácido Glutámico/metabolismo , Ratas , Adenosina Trifosfato/metabolismo , Glucosa/metabolismo , Glucosa/deficiencia , Actinas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , NADPH Oxidasas/metabolismo , Acetofenonas/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Maleato de Dizocilpina/farmacología , Ácido Quinurénico/farmacología , Ácido Quinurénico/metabolismo , Ratas Sprague-Dawley
3.
J Neurochem ; 168(5): 910-954, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38183680

RESUMEN

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.


Asunto(s)
Encéfalo , Metabolismo Energético , Animales , Humanos , Encéfalo/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33622793

RESUMEN

Reactive oxygen species (ROS) like hydrogen peroxide (H2O2) are transient species that have broad actions in signaling and stress, but spatioanatomical understanding of their biology remains insufficient. Here, we report a tandem activity-based sensing and labeling strategy for H2O2 imaging that enables capture and permanent recording of localized H2O2 fluxes. Peroxy Green-1 Fluoromethyl (PG1-FM) is a diffusible small-molecule probe that senses H2O2 by a boronate oxidation reaction to trigger dual release and covalent labeling of a fluorescent product, thus preserving spatial information on local H2O2 changes. This unique reagent enables visualization of transcellular redox signaling in a microglia-neuron coculture cell model, where selective activation of microglia for ROS production increases H2O2 in nearby neurons. In addition to identifying ROS-mediated cell-to-cell communication, this work provides a starting point for the design of chemical probes that can achieve high spatial fidelity by combining activity-based sensing and labeling strategies.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Peróxido de Hidrógeno/metabolismo , Microglía/metabolismo , Sondas Moleculares/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Animales , Ácidos Borónicos/química , Comunicación Celular , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Técnicas de Cocultivo , Embrión de Mamíferos , Colorantes Fluorescentes/síntesis química , Células HeLa , Humanos , Ratones , Microglía/citología , Microglía/efectos de los fármacos , Sondas Moleculares/síntesis química , Neuronas/citología , Neuronas/efectos de los fármacos , Oxidación-Reducción , Paraquat/farmacología , Células RAW 264.7 , Coloración y Etiquetado/métodos
5.
J Neurochem ; 159(6): 1008-1015, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34587283

RESUMEN

Metabolic intermediates influence inflammation not only through signaling effects, but also by fueling the production of pro-inflammatory molecules. Microglial production of nitric oxide (NO) requires the consumption of NADPH. NADPH consumed in this process is regenerated from NADP+ primarily through the hexose monophosphate shunt, which can utilize only glucose as a substrate. These factors predict that glucose availability can be rate-limiting for glial NO production. To test this prediction, cultured astrocytes and microglia were incubated with lipopolysaccharide and interferon-γ to promote expression of inducible nitric oxide synthase, and the rate of NO production was assessed at defined glucose concentrations. Increased NO production was detected only in cultures containing microglia. The NO production was markedly slowed at glucose concentrations below 0.5 mM, and comparably reduced by inhibition of the hexose monophosphate shunt with 6-aminonicotinamide. Reduced NO production caused by glucose deprivation was partly reversed by malate, which fuels NADPH production by malate dehydrogenase, and by NADPH itself. These findings highlight the role of the hexose monophosphate shunt in fueling NO synthesis and suggest that microglial NO production in the brain may be limited at sites of low glucose availability, such as abscesses or other compartmentalized infections.


Asunto(s)
Glucosa/metabolismo , Microglía/metabolismo , Óxido Nítrico/biosíntesis , Animales , Animales Recién Nacidos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Femenino , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/biosíntesis
6.
J Neurosci Res ; 97(8): 914-922, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30892752

RESUMEN

Glycogen stores in the brain have been recognized for decades, but the underlying physiological function of this energy reserve remains elusive. This uncertainty stems in part from several technical challenges inherent in the study of brain glycogen metabolism. These include low glycogen content in the brain, non-homogeneous labeling of glycogen by radiotracers, rapid glycogenolysis during postmortem tissue handling, and effects of the stress response on brain glycogen turnover. Here we briefly review the aspects of the glycogen structure and metabolism that bear on these technical challenges and present ways they can be addressed.


Asunto(s)
Encéfalo/metabolismo , Glucógeno/metabolismo , Glucogenólisis , Animales , Bioensayo/métodos , Metabolismo Energético , Histocitoquímica/métodos , Humanos
7.
Glia ; 66(6): 1134-1137, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29476554

RESUMEN

Early views of glia as relatively inert, housekeeping cells have evolved, and glia are now recognized as dynamic cells that not only respond to neuronal activity but also sense metabolic changes and regulate neuronal metabolism. This evolution has been aided in part by technical advances permitting progressively better spatial and temporal resolution. Recent advances in cell-type specific genetic manipulation and sub-cellular metabolic probes promise to further this evolution by enabling study of metabolic interactions between intertwined fine neuronal and glial processes in vivo. Views of glia in disease processes have also evolved. Long considered purely reactive, glia and particularly microglia are now seen to play active roles in both promoting and limiting brain injury. At the same time, established concepts of glial energetics are now being linked to areas such as learning and neural network function, topics previously considered far removed from glial biology.


Asunto(s)
Encéfalo/metabolismo , Neuroglía/metabolismo , Animales , Metabolismo Energético , Humanos , Neuronas/metabolismo
8.
Glia ; 66(6): 1200-1212, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29219210

RESUMEN

Microglia have diverse actions, ranging from synapse pruning in development to cytotoxic effects in disease. Brain energy metabolism and substrate availability vary under normal and disease states, but how these variations influence microglial function is relatively unknown. Microglia, like most other cell types, express the full complement of gene products required for both glycolytic and oxidative metabolism. Evidence suggests that microglia increase aerobic glycolysis and decrease respiration when activated by various stimuli. Mitochondrial function, glucose availability, and glycolytic rate influence pro-inflammatory gene expression at both transcriptional and post-translational levels. These effects are mediated through CtBP, an NADH-sensitive transcriptional co-repressor; through effects on NLRP3 inflammasome assembly and caspase-1 activation; through formation of advanced glycation end-products; and by less well-defined mechanisms. In addition to these transcriptional effects, microglial glucose metabolism is also required for superoxide production by NADPH oxidase, as glucose is the obligate substrate for regenerating NADPH in the hexose monophosphate shunt. Microglia also metabolize acetoacetate and ß-hydroxybutyrate, which are generated during fasting or ketogenic diet, and respond to these ketones as metabolic signals. ß-Hydroxybutyrate inhibits histone de-acetylases and activates microglial GRP109A receptors. These actions suppress microglia activation after brain injury and promote neuroprotective microglia phenotypes. As our understanding of microglial activation matures, additional links between energy metabolism and microglial function are likely to be identified.


Asunto(s)
Metabolismo Energético/fisiología , Microglía/metabolismo , Animales , Humanos
9.
Proc Natl Acad Sci U S A ; 111(37): 13487-92, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25136123

RESUMEN

Cockayne syndrome (CS) is a human DNA repair-deficient disease that involves transcription coupled repair (TCR), in which three gene products, Cockayne syndrome A (CSA), Cockayne syndrome B (CSB), and ultraviolet stimulated scaffold protein A (UVSSA) cooperate in relieving RNA polymerase II arrest at damaged sites to permit repair of the template strand. Mutation of any of these three genes results in cells with increased sensitivity to UV light and defective TCR. Mutations in CSA or CSB are associated with severe neurological disease but mutations in UVSSA are for the most part only associated with increased photosensitivity. This difference raises questions about the relevance of TCR to neurological disease in CS. We find that CSB-mutated cells, but not UVSSA-deficient cells, have increased levels of intramitochondrial reactive oxygen species (ROS), especially when mitochondrial complex I is inhibited by rotenone. Increased ROS would result in oxidative damage to mitochondrial proteins, lipids, and DNA. CSB appears to behave as an electron scavenger in the mitochondria whose absence leads to increased oxidative stress. Mitochondrial ROS, however, did not cause detectable nuclear DNA damage even when base excision repair was blocked by an inhibitor of polyADP ribose polymerase. Neurodegeneration in Cockayne syndrome may therefore be associated with ROS-induced damage in the mitochondria, independent of nuclear TCR. An implication of our present results is that mitochondrial dysfunction involving ROS has a major impact on CS-B pathology, whereas nuclear TCR may have a minimal role.


Asunto(s)
Núcleo Celular/patología , Daño del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/efectos de la radiación , Etidio/análogos & derivados , Etidio/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibroblastos/efectos de la radiación , Histonas/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/efectos de la radiación , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Proteínas de Unión a Poli-ADP-Ribosa , Rotenona/toxicidad , Rayos Ultravioleta
10.
J Neurosci ; 35(18): 7143-52, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25948264

RESUMEN

Oxidative stress contributes to neuronal death in brain ischemia-reperfusion. Tissue levels of the endogenous antioxidant glutathione (GSH) are depleted during ischemia-reperfusion, but it is unknown whether this depletion is a cause or an effect of oxidative stress, and whether it occurs in neurons or other cell types. We used immunohistochemical methods to evaluate glutathione, superoxide, and oxidative stress in mouse hippocampal neurons after transient forebrain ischemia. GSH levels in CA1 pyramidal neurons were normally high relative to surrounding neuropil, and exhibited a time-dependent decrease during the first few hours of reperfusion. Colabeling for superoxide in the neurons showed a concurrent increase in detectable superoxide over this interval. To identify cause-effect relationships between these changes, we independently manipulated superoxide production and GSH metabolism during reperfusion. Mice in which NADPH oxidase activity was blocked to prevent superoxide production showed preservation of neuronal GSH content, thus demonstrating that neuronal GSH depletion is result of oxidative stress. Conversely, mice in which neuronal GSH levels were maintained by N-acetyl cysteine treatment during reperfusion showed less neuronal superoxide signal, oxidative stress, and neuronal death. At 3 d following ischemia, GSH content in reactive astrocytes and microglia was increased in the hippocampal CA1 relative to surviving neurons. Results of these studies demonstrate that neuronal GSH depletion is both a result and a cause of neuronal oxidative stress after ischemia-reperfusion, and that postischemic restoration of neuronal GSH levels can be neuroprotective.


Asunto(s)
Isquemia Encefálica/metabolismo , Glutatión/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/fisiología , Daño por Reperfusión/metabolismo , Animales , Isquemia Encefálica/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Daño por Reperfusión/etiología , Daño por Reperfusión/patología
11.
J Neurosci ; 35(22): 8653-61, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26041930

RESUMEN

Intracortical brain-machine interfaces (BMIs) may eventually restore function in those with motor disability after stroke. However, current research into the development of intracortical BMIs has focused on subjects with largely intact cortical structures, such as those with spinal cord injury. Although the stroke perilesional cortex (PLC) has been hypothesized as a potential site for a BMI, it remains unclear whether the injured motor cortical network can support neuroprosthetic control directly. Using chronic electrophysiological recordings in a rat stroke model, we demonstrate here the PLC's capacity for neuroprosthetic control and physiological plasticity. We initially found that the perilesional network demonstrated abnormally increased slow oscillations that also modulated neural firing. Despite these striking abnormalities, neurons in the perilesional network could be modulated volitionally to learn neuroprosthetic control. The rate of learning was surprisingly similar regardless of the electrode distance from the stroke site and was not significantly different from intact animals. Moreover, neurons achieved similar task-related modulation and, as an ensemble, formed cell assemblies with learning. Such control was even achieved in animals with poor motor recovery, suggesting that neuroprosthetic control is possible even in the absence of motor recovery. Interestingly, achieving successful control also reduced locking to abnormal oscillations significantly. Our results thus suggest that, despite the disrupted connectivity in the PLC, it may serve as an effective target for neuroprosthetic control in those with poor motor recovery after stroke.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Motora/fisiopatología , Destreza Motora/fisiología , Neuronas/fisiología , Accidente Cerebrovascular/patología , Análisis de Varianza , Animales , Interfaces Cerebro-Computador , Masculino , Corteza Motora/patología , Ratas , Ratas Long-Evans , Interfaz Usuario-Computador
12.
Glia ; 64(11): 1869-78, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27444121

RESUMEN

Brain injury resulting from stroke or trauma can be exacerbated by the release of proinflammatory cytokines, proteases, and reactive oxygen species by activated microglia. The microglial activation resulting from brain injury is mediated in part by alarmins, which are signaling molecules released from damaged cells. The nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) has been shown to regulate microglial activation after brain injury, and here we show that signaling effects of the alarmin S100B are regulated by PARP-1. S100B is a protein localized predominantly to astrocytes. Exogenous S100B added to primary microglial cultures induced a rapid change in microglial morphology, upregulation of IL-1ß, TNFα, and iNOS gene expression, and release of matrix metalloproteinase 9 and nitric oxide. Most, though not all of these effects were attenuated in PARP-1(-/-) microglia and in wild-type microglia treated with the PARP inhibitor, veliparib. Microglial activation and gene expression changes induced by S100B injected directly into brain were likewise attenuated by PARP-1 inhibition. The anti-inflammatory effects of PARP-1 inhibitors in acutely injured brain may thus be mediated in part through effects on S100B signaling pathways. GLIA 2016;64:1869-1878.


Asunto(s)
Alarminas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Microglía/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/farmacología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Bencimidazoles/farmacología , Encéfalo/citología , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fenantrenos/farmacología , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Polisacáridos/toxicidad , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(46): E4362-8, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24163350

RESUMEN

Sustained activation of N-methyl-d-aspartate (NMDA) -type glutamate receptors leads to excitotoxic neuronal death in stroke, brain trauma, and neurodegenerative disorders. Superoxide production by NADPH oxidase is a requisite event in the process leading from NMDA receptor activation to excitotoxic death. NADPH oxidase generates intracellular H(+) along with extracellular superoxide, and the intracellular H(+) must be released or neutralized to permit continued NADPH oxidase function. In cultured neurons, NMDA-induced superoxide production and neuronal death were prevented by intracellular acidification by as little as 0.2 pH units, induced by either lowered medium pH or by inhibiting Na(+)/H(+) exchange. In mouse brain, superoxide production induced by NMDA injections or ischemia-reperfusion was likewise prevented by inhibiting Na(+)/H(+) exchange and by reduced expression of the Na(+)/H(+) exchanger-1 (NHE1). Neuronal intracellular pH and neuronal Na(+)/H(+) exchange are thus potent regulators of excitotoxic superoxide production. These findings identify a mechanism by which cell metabolism can influence coupling between NMDA receptor activation and superoxide production.


Asunto(s)
Encéfalo/metabolismo , Muerte Celular/fisiología , Líquido Intracelular/química , NADPH Oxidasas/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Análisis de Varianza , Animales , Encéfalo/citología , Proteínas de Transporte de Catión/metabolismo , Células Cultivadas , Cartilla de ADN/genética , Fluorescencia , Concentración de Iones de Hidrógeno , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/metabolismo , Superóxidos/metabolismo
14.
J Neuroinflammation ; 12: 229, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26637332

RESUMEN

BACKGROUND: The nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is required for pro-inflammatory effects of TNFα. Our previous studies demonstrated that PARP-1 mediates TNFα-induced NF-κB activation in glia. Here, we evaluated the mechanisms by which TNFα activates PARP-1 and PARP-1 mediates NF-κB activation. METHODS: Primary cultures of mouse cortical astrocytes and microglia were treated with TNFα and suitable signaling pathway modulators (pharmacological and molecular). Outcome measures included calcium imaging, PARP-1 activation status, NF-κB transcriptional activity, DNA damage assesment and cytokine relesease profiling. RESULTS: TNFα induces PARP-1 activation in the absence of detectable DNA strand breaks, as measured by the PANT assay. TNFα-induced transcriptional activation of NF-κB requires PARP-1 enzymatic activity. Enzymatic activation of PARP-1 by TNFα was blocked in Ca(2+)-free medium, by Ca(2+) chelation with BAPTA-AM, and by D609, an inhibitor of phoshatidyl choline-specific phospholipase C (PC-PLC), but not by thapsigargin or by U73112, an inhibitor of phosphatidyl inisitol-specific PLC (PI -PLC). A TNFR1 blocking antibody reduced Ca(2+) influx and PARP-1 activation. TNFα-induced PARP-1 activation was also blocked by siRNA downregulation of ERK2 and by PD98059, an inhibitor of the MEK / ERK protein kinase cascade. Moreover, TNFα-induced NF-κB (p65) transcriptional activation was absent in cells expressing PARP-1 that lacked ERK2 phosphorylation sites, while basal NF-κB transcriptional activation increased in cells expressing PARP-1 with a phosphomimetic substitution at an ERK2 phophorylation site. CONCLUSIONS: These results suggest that TNFα induces PARP-1 activation through a signaling pathway involving TNFR1, Ca(2+) influx, activation of PC-PLC, and activation of the MEK1 / ERK2 protein kinase cascade. TNFα-induced PARP-1 activation is not associated with DNA damage, but ERK2 mediated phosphorylation of PARP-1.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/fisiología , FN-kappa B/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/fisiología , Activación Transcripcional/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Fosfolipasas de Tipo C/fisiología , Animales , Señalización del Calcio/efectos de los fármacos , Quelantes/farmacología , Daño del ADN , Activación Enzimática/efectos de los fármacos , Femenino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Poli(ADP-Ribosa) Polimerasa-1 , ARN Interferente Pequeño/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Fosfolipasas de Tipo C/antagonistas & inhibidores
15.
Biochim Biophys Acta ; 1833(8): 1985-91, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23597856

RESUMEN

NF-κB is a transcription factor that integrates pro-inflammatory and pro-survival responses in diverse cell types. The activity of NF-κB is regulated in part by acetylation of its p65 subunit at lysine 310, which is required for transcription complex formation. De-acetylation at this site is performed by sirtuin 1(SIRT1) and possibly other sirtuins in an NAD(+) dependent manner, such that SIRT1 inhibition promotes NF-κB transcriptional activity. It is unknown, however, whether changes in NAD(+) levels can influence p65 acetylation and cellular inflammatory responses. Poly(ADP-ribose)-1 (PARP-1) is an abundant nuclear enzyme that consumes NAD(+) in the process of forming (ADP-ribose)polymers on target proteins, and extensive PARP-1 activation can reduce intracellular NAD(+) concentrations. Here we tested the idea that PARP-1 activation can regulate NF-κB transcriptional activity by reducing NAD(+) concentrations and thereby inhibiting de-acetylation of p65. Primary astrocyte cultures were treated with the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) to induce PARP-1 activation. This resulted in sustained acetylation of p65 and increased NF-κB transcriptional activity as monitored by a κB-driven eGFP reporter gene. These effects of MNNG were negated by a PARP-1 inhibitor, in PARP-1(-/-) cells, and in PARP-1(-/-) cells transfected with a catalytically inactive PARP-1 construct, thus confirming that these effects are mediated by PARP-1 catalytic activity. The effects of PARP-1 activation were replicated by a SIRT1 inhibitor, EX-527, and were reversed by exogenous NAD(+). These findings demonstrate that PARP-1-induced changes in NAD(+) levels can modulate NF-κB transcriptional activity through effects on p65 acetylation.


Asunto(s)
NAD/deficiencia , FN-kappa B/genética , FN-kappa B/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , eIF-2 Quinasa/metabolismo , Acetilación/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Astrocitos/enzimología , Astrocitos/metabolismo , Astrocitos/fisiología , Carbazoles/farmacología , Células Cultivadas , Humanos , Metilnitronitrosoguanidina/farmacología , Ratones , NAD/genética , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Sirtuina 1/metabolismo , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Transfección , eIF-2 Quinasa/genética
16.
Stroke ; 45(10): 3040-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25158771

RESUMEN

BACKGROUND AND PURPOSE: The NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor is phosphorylated by the Src family kinase Fyn in brain, with tyrosine (Y) 1472 as the major phosphorylation site. Although Y1472 phosphorylation is important for synaptic plasticity, it is unknown whether it is involved in NMDA receptor-mediated excitotoxicity in neonatal brain hypoxia-ischemia (HI). This study was designed to elucidate the specific role of Y1472 phosphorylation of NR2B in neonatal HI in vivo and in NMDA-mediated neuronal death in vitro. METHODS: Neonatal mice with a knockin mutation of Y1472 to phenylalanine (YF-KI) and their wild-type littermates were subjected to HI using the Vannucci model. Brains were scored 5 days later for damage using cresyl violet and iron staining. Western blotting and immunoprecipitation were performed to determine NR2B tyrosine phosphorylation. Expression of NADPH oxidase subunits and superoxide production were measured in vivo. NMDA-induced calcium response, superoxide formation, and cell death were evaluated in primary cortical neurons. RESULTS: After neonatal HI, YF-KI mice have reduced expression of NADPH oxidase subunit gp91phox and p47phox and superoxide production, lower activity of proteases implicated in necrotic and apoptotic cell death, and less brain damage when compared with the wild-type mice. In vitro, YF-KI mutation diminishes superoxide generation in response to NMDA without effect on calcium accumulation and inhibits NMDA and glutamate-induced cell death. CONCLUSIONS: Upregulation of NR2B phosphorylation at Y1472 after neonatal HI is involved in superoxide-mediated oxidative stress and contributes to brain injury.


Asunto(s)
Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Técnicas de Sustitución del Gen , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Fosforilación , Tirosina/metabolismo
17.
Am J Physiol Endocrinol Metab ; 306(8): E854-68, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24518676

RESUMEN

Lipids are a diverse collection of macromolecules essential for normal physiology, but the tissue distribution and function for many individual lipid species remain unclear. Here, we report a mass spectrometry survey of lipid abundance across 18 mouse tissues, detecting ~1,000 mass spectrometry features, of which we identify 179 lipids from the glycerolipids, glycerophospholipids, lysophospholipids, acylcarnitines, sphingolipids, and cholesteryl ester classes. Our data reveal tissue-specific organization of lipids and can be used to generate testable hypotheses. For example, our data indicate that circulating triglycerides positively and negatively associated with future diabetes in humans are enriched in mouse adipose tissue and liver, respectively, raising hypotheses regarding the tissue origins of these diabetes-associated lipids. We also integrate our tissue lipid data with gene expression profiles to predict a number of substrates of lipid-metabolizing enzymes, highlighting choline phosphotransferases and sterol O-acyltransferases. Finally, we identify several tissue-specific lipids not present in plasma under normal conditions that may be of interest as biomarkers of tissue injury, and we show that two of these lipids are released into blood following ischemic brain injury in mice. This resource complements existing compendia of tissue gene expression and may be useful for integrative physiology and lipid biology.


Asunto(s)
Estructuras Animales/química , Metabolismo de los Lípidos , Lípidos/análisis , Metaboloma , Adiposidad , Estructuras Animales/metabolismo , Animales , Cromatografía Liquida , Análisis por Conglomerados , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Distribución Tisular
18.
Cell Rep ; 43(3): 113914, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38451813

RESUMEN

Stroke, trauma, and neurodegenerative disorders cause loss of neurites (axons and dendrites) in addition to neuronal death. Neurite loss may result directly from a primary insult, secondary to parental neuron death, or secondary to a post-injury inflammatory response. Here, we use lipopolysaccharide and the alarmin S100ß to selectively evaluate neurite loss caused by the inflammatory response. Activation of microglia and infiltrating macrophages by these stimuli causes neurite loss that far exceeds neuronal death, both in vitro and in vivo. Neurite loss is accompanied by the formation of cofilactin rods and aggregates (CARs), which are polymers of cofilin-1 and actin induced by oxidative stress and other factors. Mice deficient in either cofilin-1 or the superoxide-generating enzyme NADPH oxidase-2 show reduced CAR formation, neurite loss, and motor impairment. The findings identify a mechanism by which inflammation leads to neurite loss via CAR formation and highlight the relevance of neurite loss to functional impairment.


Asunto(s)
Neuritas , Enfermedades Neurodegenerativas , Ratones , Animales , Neuronas , Axones , Inflamación
19.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798486

RESUMEN

Post-stroke hyperglycemia occurs in 30% - 60% of ischemic stroke patients as part of the systemic stress response, but neither clinical evidence nor pre-clinical studies indicate whether post-stroke hyperglycemia affects stroke outcome. Here we investigated this issue using a mouse model of permanent ischemia. Mice were maintained either normoglycemic or hyperglycemic during the interval of 17 - 48 hours after ischemia onset. Post-stroke hyperglycemia was found to increase infarct volume, blood-brain barrier disruption, and hemorrhage formation, and to impair motor recovery. Post-stroke hyperglycemia also increased superoxide formation by peri-infarct microglia/macrophages. In contrast, post-stroke hyperglycemia did not increase superoxide formation or exacerbate motor impairment in p47 phox-/- mice, which cannot form an active superoxide-producing NADPH oxidase-2 complex. These results suggest that hyperglycemia occurring hours-to-days after ischemia can increase oxidative stress in peri-infarct tissues by fueling NADPH oxidase activity in reactive microglia/macrophages, and by this mechanism contribute to worsened functional outcome.

20.
Cell Death Dis ; 15(4): 264, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615035

RESUMEN

Cognitive dysfunction and dementia are critical symptoms of Lewy Body dementias (LBD). Specifically, alpha-synuclein (αSyn) accumulation in the hippocampus leading to synaptic dysfunction is linked to cognitive deficits in LBD. Here, we investigated the pathological impact of αSyn on hippocampal neurons. We report that either αSyn overexpression or αSyn pre-formed fibrils (PFFs) treatment triggers the formation of cofilin-actin rods, synapse disruptors, in cultured hippocampal neurons and in the hippocampus of synucleinopathy mouse models and of LBD patients. In vivo, cofilin pathology is present concomitantly with synaptic impairment and cognitive dysfunction. Rods generation prompted by αSyn involves the co-action of the cellular prion protein (PrPC) and the chemokine receptor 5 (CCR5). Importantly, we show that CCR5 inhibition, with a clinically relevant peptide antagonist, reverts dendritic spine impairment promoted by αSyn. Collectively, we detail the cellular and molecular mechanism through which αSyn disrupts hippocampal synaptic structure and we identify CCR5 as a novel therapeutic target to prevent synaptic impairment and cognitive dysfunction in LBD.


Asunto(s)
Trastornos del Conocimiento , Enfermedad por Cuerpos de Lewy , Animales , Ratones , Humanos , alfa-Sinucleína , Espinas Dendríticas , Factores Despolimerizantes de la Actina , Receptores CCR5/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA