Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 185(9): 1471-1486.e19, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35381200

RESUMEN

Argonaute proteins use single-stranded RNA or DNA guides to target complementary nucleic acids. This allows eukaryotic Argonaute proteins to mediate RNA interference and long prokaryotic Argonaute proteins to interfere with invading nucleic acids. The function and mechanisms of the phylogenetically distinct short prokaryotic Argonaute proteins remain poorly understood. We demonstrate that short prokaryotic Argonaute and the associated TIR-APAZ (SPARTA) proteins form heterodimeric complexes. Upon guide RNA-mediated target DNA binding, four SPARTA heterodimers form oligomers in which TIR domain-mediated NAD(P)ase activity is unleashed. When expressed in Escherichia coli, SPARTA is activated in the presence of highly transcribed multicopy plasmid DNA, which causes cell death through NAD(P)+ depletion. This results in the removal of plasmid-invaded cells from bacterial cultures. Furthermore, we show that SPARTA can be repurposed for the programmable detection of DNA sequences. In conclusion, our work identifies SPARTA as a prokaryotic immune system that reduces cell viability upon RNA-guided detection of invading DNA.


Asunto(s)
Proteínas Argonautas , Células Procariotas/fisiología , Proteínas Argonautas/metabolismo , ADN/metabolismo , Células Procariotas/citología , Células Procariotas/metabolismo , ARN Guía de Kinetoplastida
2.
Cell ; 182(6): 1381-1383, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32946780

RESUMEN

Eukaryotic Argonaute proteins strictly mediate RNA-guided RNA interference. In contrast, prokaryotic Argonautes can utilize DNA guides to target complementary DNA sequences to protect their hosts against invading DNA. In this issue of Cell, Jolly and colleagues demonstrate that Thermus thermophilus Argonaute additionally participates in DNA replication by unlinking catenated chromosomes.


Asunto(s)
Proteínas Argonautas , Thermus thermophilus , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Cromosomas/metabolismo , Replicación del ADN , Células Procariotas/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
3.
Mol Cell ; 73(3): 589-600.e4, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639240

RESUMEN

CRISPR-Cas12a (Cpf1) is an RNA-guided DNA-cutting nuclease that has been repurposed for genome editing. Upon target DNA binding, Cas12a cleaves both the target DNA in cis and non-target single-stranded DNAs (ssDNAs) in trans. To elucidate the molecular basis for both DNase cleavage modes, we performed structural and biochemical studies on Francisella novicida Cas12a. We show that guide RNA-target strand DNA hybridization conformationally activates Cas12a, triggering its trans-acting, non-specific, single-stranded DNase activity. In turn, cis cleavage of double-stranded DNA targets is a result of protospacer adjacent motif (PAM)-dependent DNA duplex unwinding, electrostatic stabilization of the displaced non-target DNA strand, and ordered sequential cleavage of the non-target and target DNA strands. Cas12a releases the PAM-distal DNA cleavage product and remains bound to the PAM-proximal DNA cleavage product in a catalytically competent, trans-active state. Together, these results provide a revised model for the molecular mechanisms of both the cis- and the trans-acting DNase activities of Cas12a enzymes, enabling their further exploitation as genome editing tools.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN de Cadena Simple/metabolismo , Francisella/enzimología , Edición Génica/métodos , ARN Guía de Kinetoplastida/metabolismo , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Activación Enzimática , Francisella/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Relación Estructura-Actividad , Especificidad por Sustrato
4.
Nucleic Acids Res ; 52(4): 2012-2029, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38224450

RESUMEN

In both prokaryotic and eukaryotic innate immune systems, TIR domains function as NADases that degrade the key metabolite NAD+ or generate signaling molecules. Catalytic activation of TIR domains requires oligomerization, but how this is achieved varies in distinct immune systems. In the Short prokaryotic Argonaute (pAgo)/TIR-APAZ (SPARTA) immune system, TIR NADase activity is triggered upon guide RNA-mediated recognition of invading DNA by an unknown mechanism. Here, we describe cryo-EM structures of SPARTA in the inactive monomeric and target DNA-activated tetrameric states. The monomeric SPARTA structure reveals that in the absence of target DNA, a C-terminal tail of TIR-APAZ occupies the nucleic acid binding cleft formed by the pAgo and TIR-APAZ subunits, inhibiting SPARTA activation. In the active tetrameric SPARTA complex, guide RNA-mediated target DNA binding displaces the C-terminal tail and induces conformational changes in pAgo that facilitate SPARTA-SPARTA dimerization. Concurrent release and rotation of one TIR domain allow it to form a composite NADase catalytic site with the other TIR domain within the dimer, and generate a self-complementary interface that mediates cooperative tetramerization. Combined, this study provides critical insights into the structural architecture of SPARTA and the molecular mechanism underlying target DNA-dependent oligomerization and catalytic activation.


Asunto(s)
Inmunidad Innata , Células Procariotas , Sistema Inmunológico , NAD+ Nucleosidasa , Células Procariotas/inmunología , ARN Guía de Sistemas CRISPR-Cas , Transducción de Señal , Eucariontes/inmunología
5.
Mol Cell ; 66(2): 221-233.e4, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28431230

RESUMEN

The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both activities, we determined crystal structures of Francisella novicida Cas12a bound to guide RNA and in complex with an R-loop formed by a non-cleavable guide RNA precursor and a full-length target DNA. Corroborated by biochemical experiments, these structures reveal the mechanisms of guide RNA processing and pre-ordering of the seed sequence in the guide RNA that primes Cas12a for target DNA binding. Furthermore, the R-loop complex structure reveals the strand displacement mechanism that facilitates guide-target hybridization and suggests a mechanism for double-stranded DNA cleavage involving a single active site. Together, these insights advance our mechanistic understanding of Cas12a enzymes and may contribute to further development of genome editing technologies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/metabolismo , Endonucleasas/metabolismo , Francisella/enzimología , Edición Génica/métodos , Precursores del ARN/metabolismo , ARN Bacteriano/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Catálisis , ADN Bacteriano/química , ADN Bacteriano/genética , Endonucleasas/química , Endonucleasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Francisella/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , Precursores del ARN/química , Precursores del ARN/genética , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Relación Estructura-Actividad
6.
Mol Cell ; 65(6): 985-998.e6, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28262506

RESUMEN

Several prokaryotic Argonaute proteins (pAgos) utilize small DNA guides to mediate host defense by targeting invading DNA complementary to the DNA guide. It is unknown how these DNA guides are being generated and loaded onto pAgo. Here, we demonstrate that guide-free Argonaute from Thermus thermophilus (TtAgo) can degrade double-stranded DNA (dsDNA), thereby generating small dsDNA fragments that subsequently are loaded onto TtAgo. Combining single-molecule fluorescence, molecular dynamic simulations, and structural studies, we show that TtAgo loads dsDNA molecules with a preference toward a deoxyguanosine on the passenger strand at the position opposite to the 5' end of the guide strand. This explains why in vivo TtAgo is preferentially loaded with guides with a 5' end deoxycytidine. Our data demonstrate that TtAgo can independently generate and selectively load functional DNA guides.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas Bacterianas/metabolismo , ADN sin Sentido/metabolismo , ADN Bacteriano/metabolismo , Thermus thermophilus/enzimología , Proteínas Argonautas/química , Proteínas Argonautas/genética , Proteínas Bacterianas/genética , Sitios de Unión , ADN sin Sentido/química , ADN sin Sentido/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Desoxicitidina/metabolismo , Desoxiguanosina/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Imagen Individual de Molécula , Relación Estructura-Actividad , Thermus thermophilus/genética
7.
Nucleic Acids Res ; 47(11): 5809-5821, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31069393

RESUMEN

Prokaryotic Argonaute proteins (pAgos) constitute a diverse group of endonucleases of which some mediate host defense by utilizing small interfering DNA guides (siDNA) to cleave complementary invading DNA. This activity can be repurposed for programmable DNA cleavage. However, currently characterized DNA-cleaving pAgos require elevated temperatures (≥65°C) for their activity, making them less suitable for applications that require moderate temperatures, such as genome editing. Here, we report the functional and structural characterization of the siDNA-guided DNA-targeting pAgo from the mesophilic bacterium Clostridium butyricum (CbAgo). CbAgo displays a preference for siDNAs that have a deoxyadenosine at the 5'-end and thymidines at nucleotides 2-4. Furthermore, CbAgo mediates DNA-guided DNA cleavage of AT-rich double stranded DNA at moderate temperatures (37°C). This study demonstrates that certain pAgos are capable of programmable DNA cleavage at moderate temperatures and thereby expands the scope of the potential pAgo-based applications.


Asunto(s)
Proteínas Argonautas/metabolismo , Clostridium butyricum/metabolismo , División del ADN , ADN/química , Proteínas Argonautas/genética , Proteínas Bacterianas/metabolismo , Clostridium butyricum/genética , ADN/metabolismo , ADN de Cadena Simple/análisis , Transferencia Resonante de Energía de Fluorescencia , Edición Génica , Silenciador del Gen , Mutación , Filogenia , Plásmidos/metabolismo , Unión Proteica , ARN Guía de Kinetoplastida , Temperatura
8.
Proc Natl Acad Sci U S A ; 120(34): e2311727120, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37566634
9.
Annu Rev Genet ; 46: 311-39, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23145983

RESUMEN

All organisms need to continuously adapt to changes in their environment. Through horizontal gene transfer, bacteria and archaea can rapidly acquire new traits that may contribute to their survival. However, because new DNA may also cause damage, removal of imported DNA and protection against selfish invading DNA elements are also important. Hence, there should be a delicate balance between DNA uptake and DNA degradation. Here, we describe prokaryotic antiviral defense systems, such as receptor masking or mutagenesis, blocking of phage DNA injection, restriction/modification, and abortive infection. The main focus of this review is on CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated), a prokaryotic adaptive immune system. Since its recent discovery, our biochemical understanding of this defense system has made a major leap forward. Three highly diverse CRISPR/Cas types exist that display major structural and functional differences in their mode of generating resistance against invading nucleic acids. Because several excellent recent reviews cover all CRISPR subtypes, we mainly focus on a detailed description of the type I-E CRISPR/Cas system of the model bacterium Escherichia coli K12.


Asunto(s)
ADN Helicasas/metabolismo , Endodesoxirribonucleasas/metabolismo , Escherichia coli K12/inmunología , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Secuencias de Aminoácidos , Bacteriófagos/genética , Bacteriófagos/inmunología , Bacteriófagos/patogenicidad , Proteínas Asociadas a CRISPR , ADN Helicasas/genética , ADN Viral/genética , ADN Viral/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Endodesoxirribonucleasas/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli K12/virología , Proteínas de Escherichia coli/genética , Genes Bacterianos , Lisogenia , Profagos/genética , Profagos/metabolismo , Especificidad de la Especie , Internalización del Virus
10.
Nature ; 507(7491): 258-261, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24531762

RESUMEN

RNA interference is widely distributed in eukaryotes and has a variety of functions, including antiviral defence and gene regulation. All RNA interference pathways use small single-stranded RNA (ssRNA) molecules that guide proteins of the Argonaute (Ago) family to complementary ssRNA targets: RNA-guided RNA interference. The role of prokaryotic Ago variants has remained elusive, although bioinformatics analysis has suggested their involvement in host defence. Here we demonstrate that Ago of the bacterium Thermus thermophilus (TtAgo) acts as a barrier for the uptake and propagation of foreign DNA. In vivo, TtAgo is loaded with 5'-phosphorylated DNA guides, 13-25 nucleotides in length, that are mostly plasmid derived and have a strong bias for a 5'-end deoxycytidine. These small interfering DNAs guide TtAgo to cleave complementary DNA strands. Hence, despite structural homology to its eukaryotic counterparts, TtAgo functions in host defence by DNA-guided DNA interference.


Asunto(s)
Proteínas Argonautas/metabolismo , División del ADN , ADN/metabolismo , Silenciador del Gen , Células Procariotas/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Emparejamiento Base/genética , Secuencia de Bases , ADN/genética , Desoxicitidina/genética , Desoxicitidina/metabolismo , Fosforilación , Plásmidos/genética
11.
Nucleic Acids Res ; 46(2): 873-885, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29253268

RESUMEN

Prokaryotes encode various host defense systems that provide protection against mobile genetic elements. Restriction-modification (R-M) and CRISPR-Cas systems mediate host defense by sequence specific targeting of invasive DNA. T-even bacteriophages employ covalent modifications of nucleobases to avoid binding and therefore cleavage of their DNA by restriction endonucleases. Here, we describe that DNA glucosylation of bacteriophage genomes affects interference of some but not all CRISPR-Cas systems. We show that glucosyl modification of 5-hydroxymethylated cytosines in the DNA of bacteriophage T4 interferes with type I-E and type II-A CRISPR-Cas systems by lowering the affinity of the Cascade and Cas9-crRNA complexes for their target DNA. On the contrary, the type V-A nuclease Cas12a (also known as Cpf1) is not impaired in binding and cleavage of glucosylated target DNA, likely due to a more open structural architecture of the protein. Our results suggest that CRISPR-Cas systems have contributed to the selective pressure on phages to develop more generic solutions to escape sequence specific host defense systems.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN Viral/metabolismo , Fagos T/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Secuencia de Bases , ADN Viral/genética , Escherichia coli/genética , Escherichia coli/virología , Unión Proteica , Fagos T/genética
12.
Biochem Soc Trans ; 47(5): 1499-1510, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31671185

RESUMEN

CRISPR-Cas12a (previously named Cpf1) is a prokaryotic deoxyribonuclease that can be programmed with an RNA guide to target complementary DNA sequences. Upon binding of the target DNA, Cas12a induces a nick in each of the target DNA strands, yielding a double-stranded DNA break. In addition to inducing cis-cleavage of the targeted DNA, target DNA binding induces trans-cleavage of non-target DNA. As such, Cas12a-RNA guide complexes can provide sequence-specific immunity against invading nucleic acids such as bacteriophages and plasmids. Akin to CRISPR-Cas9, Cas12a has been repurposed as a genetic tool for programmable genome editing and transcriptional control in both prokaryotic and eukaryotic cells. In addition, its trans-cleavage activity has been applied for high-sensitivity nucleic acid detection. Despite the demonstrated value of Cas12a for these applications, the exact molecular mechanisms of both cis- and trans-cleavage of DNA were not completely understood. Recent studies have revealed mechanistic details of Cas12a-mediates DNA cleavage: base pairing of the RNA guide and the target DNA induces major conformational changes in Cas12a. These conformational changes render Cas12a in a catalytically activated state in which it acts as deoxyribonuclease. This deoxyribonuclease activity mediates cis-cleavage of the displaced target DNA strand first, and the RNA guide-bound target DNA strand second. As Cas12a remains in the catalytically activated state after cis-cleavage, it subsequently demonstrates trans-cleavage of non-target DNA. Here, I review the mechanistic details of Cas12a-mediated cis- and trans-cleavage of DNA. In addition, I discuss how bacteriophage-derived anti-CRISPR proteins can inhibit Cas12a activity.


Asunto(s)
Sistemas CRISPR-Cas , División del ADN , Humanos , ARN Guía de Kinetoplastida/metabolismo
13.
Transgenic Res ; 28(5-6): 525-535, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31482512

RESUMEN

CRISPR-associated (Cas) nucleases are established tools for engineering of animal genomes. These programmable RNA-guided nucleases have been introduced into zygotes using expression vectors, mRNA, or directly as ribonucleoprotein (RNP) complexes by different delivery methods. Whereas microinjection techniques are well established, more recently developed electroporation methods simplify RNP delivery but can provide less consistent efficiency. Previously, we have designed Cas12a-crRNA pairs to introduce large genomic deletions in the Ubn1, Ubn2, and Rbm12 genes in mouse embryonic stem cells (ESC). Here, we have optimized the conditions for electroporation of the same Cas12a RNP pairs into mouse zygotes. Using our protocol, large genomic deletions can be generated efficiently by electroporation of zygotes with or without an intact zona pellucida. Electroporation of as few as ten zygotes is sufficient to obtain a gene deletion in mice suggesting potential applicability of this method for species with limited availability of zygotes.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Endodesoxirribonucleasas/genética , Eliminación de Gen , Técnicas de Transferencia de Gen , Animales , Electroporación , Genoma/genética , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Mutación/genética , ARN Guía de Kinetoplastida/genética , Zona Pelúcida/metabolismo , Cigoto/crecimiento & desarrollo
14.
Nucleic Acids Res ; 43(10): 5120-9, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25925567

RESUMEN

Functions of prokaryotic Argonautes (pAgo) have long remained elusive. Recently, Argonautes of the bacteria Rhodobacter sphaeroides and Thermus thermophilus were demonstrated to be involved in host defense. The Argonaute of the archaeon Pyrococcus furiosus (PfAgo) belongs to a different branch in the phylogenetic tree, which is most closely related to that of RNA interference-mediating eukaryotic Argonautes. Here we describe a functional and mechanistic characterization of PfAgo. Like the bacterial counterparts, archaeal PfAgo contributes to host defense by interfering with the uptake of plasmid DNA. PfAgo utilizes small 5'-phosphorylated DNA guides to cleave both single stranded and double stranded DNA targets, and does not utilize RNA as guide or target. Thus, with respect to function and specificity, the archaeal PfAgo resembles bacterial Argonautes much more than eukaryotic Argonautes. These findings demonstrate that the role of Argonautes is conserved through the bacterial and archaeal domains of life and suggests that eukaryotic Argonautes are derived from DNA-guided DNA-interfering host defense systems.


Asunto(s)
Proteínas Arqueales/metabolismo , Proteínas Argonautas/metabolismo , Endodesoxirribonucleasas/metabolismo , Pyrococcus furiosus/enzimología , Proteínas Arqueales/química , Proteínas Argonautas/química , Dominio Catalítico , ADN/metabolismo , División del ADN , Endodesoxirribonucleasas/química , Plásmidos/genética , Plásmidos/metabolismo , Pyrococcus furiosus/genética , Transformación Genética
15.
Proc Natl Acad Sci U S A ; 111(2): 652-7, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24374628

RESUMEN

We report on crystal structures of ternary Thermus thermophilus Argonaute (TtAgo) complexes with 5'-phosphorylated guide DNA and a series of DNA targets. These ternary complex structures of cleavage-incompatible, cleavage-compatible, and postcleavage states solved at improved resolution up to 2.2 Å have provided molecular insights into the orchestrated positioning of catalytic residues, a pair of Mg(2+) cations, and the putative water nucleophile positioned for in-line attack on the cleavable phosphate for TtAgo-mediated target cleavage by a RNase H-type mechanism. In addition, these ternary complex structures have provided insights into protein and DNA conformational changes that facilitate transition between cleavage-incompatible and cleavage-compatible states, including the role of a Glu finger in generating a cleavage-competent catalytic Asp-Glu-Asp-Asp tetrad. Following cleavage, the seed segment forms a stable duplex with the complementary segment of the target strand.


Asunto(s)
Proteínas Argonautas/química , ADN Bacteriano/química , Modelos Moleculares , Conformación Proteica , Thermus thermophilus/química , Proteínas Argonautas/metabolismo , Catálisis , ADN Bacteriano/metabolismo , Thermus thermophilus/metabolismo
16.
Nat Commun ; 15(1): 5499, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951509

RESUMEN

Argonaute proteins are the central effectors of RNA-guided RNA silencing pathways in eukaryotes, playing crucial roles in gene repression and defense against viruses and transposons. Eukaryotic Argonautes are subdivided into two clades: AGOs generally facilitate miRNA- or siRNA-mediated silencing, while PIWIs generally facilitate piRNA-mediated silencing. It is currently unclear when and how Argonaute-based RNA silencing mechanisms arose and diverged during the emergence and early evolution of eukaryotes. Here, we show that in Asgard archaea, the closest prokaryotic relatives of eukaryotes, an evolutionary expansion of Argonaute proteins took place. In particular, a deep-branching PIWI protein (HrAgo1) encoded by the genome of the Lokiarchaeon 'Candidatus Harpocratesius repetitus' shares a common origin with eukaryotic PIWI proteins. Contrasting known prokaryotic Argonautes that use single-stranded DNA as guides and/or targets, HrAgo1 mediates RNA-guided RNA cleavage, and facilitates gene silencing when expressed in human cells and supplied with miRNA precursors. A cryo-EM structure of HrAgo1, combined with quantitative single-molecule experiments, reveals that the protein displays structural features and target-binding modes that are a mix of those of eukaryotic AGO and PIWI proteins. Thus, this deep-branching archaeal PIWI may have retained an ancestral molecular architecture that preceded the functional and mechanistic divergence of eukaryotic AGOs and PIWIs.


Asunto(s)
Proteínas Argonautas , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Humanos , Interferencia de ARN , Archaea/genética , Archaea/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Microscopía por Crioelectrón , MicroARNs/genética , MicroARNs/metabolismo , Evolución Molecular , Filogenia
17.
Trends Cell Biol ; 33(7): 605-618, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36428175

RESUMEN

Argonaute proteins (Agos) use small 15-30 nucleotide-long guides to bind and/or cleave complementary target nucleic acids. Eukaryotic Agos mediate RNA-guided RNA silencing, while 'long' prokaryotic Agos (pAgos) use RNA or DNA guides to interfere with invading plasmid and viral DNA. Here, we review the function and mechanisms of truncated and highly divergent 'short' pAgos, which, until recently, remained functionally uncharacterized. Short pAgos have retained the Middle (MID) and P-element-Induced Wimpy Testis (PIWI) domains important for guide-mediated target binding, but lack the ability to cleave their targets. Instead, emerging insights reveal that various short pAgos interact with distinct accessory 'effector' enzymes. Upon guide-mediated detection of invading DNA by short pAgos, their associated effector enzymes kill the host cell and, consequentially, prevent spread of the invader.


Asunto(s)
Proteínas Argonautas , Células Procariotas , Humanos , Proteínas Argonautas/química , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Células Procariotas/metabolismo , ADN/metabolismo , Interferencia de ARN , ARN/metabolismo
18.
Curr Opin Microbiol ; 74: 102313, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37023508

RESUMEN

Both eukaryotes and prokaryotes (archaea and bacteria) encode an arsenal of immune systems that protect the host against mobile genetic elements (MGEs) including viruses, plasmids, and transposons. Whereas Argonaute proteins (Agos) are best known for post-transcriptional gene silencing in eukaryotes, in all domains of life, members from the highly diverse Argonaute protein family act as programmable immune systems. To this end, Agos are programmed with small single-stranded RNA or DNA guides to detect and silence complementary MGEs. Across and within the different domains of life, Agos function in distinct pathways and MGE detection can trigger various mechanisms that provide immunity. In this review, we delineate the diverse immune pathways and underlying mechanisms for both eukaryotic Argonautes (eAgos) and prokaryotic Argonautes (pAgos).


Asunto(s)
Proteínas Argonautas , Células Procariotas , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Eucariontes/genética , Archaea/genética , Archaea/metabolismo
19.
J Bacteriol ; 193(11): 2861-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21478358

RESUMEN

HflX GTPases are found in all three domains of life, the Bacteria, Archaea, and Eukarya. HflX from Escherichia coli has been shown to bind to the 50S ribosomal subunit in a nucleotide-dependent manner, and this interaction strongly stimulates its GTPase activity. We recently determined the structure of an HflX ortholog from the archaeon Sulfolobus solfataricus (SsoHflX). It revealed the presence of a novel HflX domain that might function in RNA binding and is linked to a canonical G domain. This domain arrangement is common to all archaeal, bacterial, and eukaryotic HflX GTPases. This paper shows that the archaeal SsoHflX, like its bacterial orthologs, binds to the 50S ribosomal subunit. This interaction does not depend on the presence of guanine nucleotides. The HflX domain is sufficient for ribosome interaction. Binding appears to be restricted to free 50S ribosomal subunits and does not occur with 70S ribosomes engaged in translation. The fingerprint (1)H-(15)N heteronuclear correlation nuclear magnetic resonance (NMR) spectrum of SsoHflX reveals a large number of well-resolved resonances that are broadened upon binding to the 50S ribosomal subunit. The GTPase activity of SsoHflX is stimulated by crude fractions of 50S ribosomal subunits, but this effect is lost with further high-salt purification of the 50S ribosomal subunits, suggesting that the stimulation depends on an extrinsic factor bound to the 50S ribosomal subunit. Our results reveal common properties but also marked differences between archaeal and bacterial HflX proteins.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Nucleótidos/metabolismo , Subunidades Ribosómicas Grandes de Archaea/metabolismo , Sulfolobus solfataricus/enzimología , Espectroscopía de Resonancia Magnética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas
20.
mBio ; 12(5): e0181321, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34634927

RESUMEN

Vaccines pave the way out of the SARS-CoV-2 pandemic. Besides mRNA and adenoviral vector vaccines, effective protein-based vaccines are needed for immunization against current and emerging variants. We have developed a virus-like particle (VLP)-based vaccine using the baculovirus-insect cell expression system, a robust production platform known for its scalability, low cost, and safety. Baculoviruses were constructed encoding SARS-CoV-2 spike proteins: full-length S, stabilized secreted S, or the S1 domain. Since subunit S only partially protected mice from SARS-CoV-2 challenge, we produced S1 for conjugation to bacteriophage AP205 VLP nanoparticles using tag/catcher technology. The S1 yield in an insect-cell bioreactor was ∼11 mg/liter, and authentic protein folding, efficient glycosylation, partial trimerization, and ACE2 receptor binding was confirmed. Prime-boost immunization of mice with 0.5 µg S1-VLPs showed potent neutralizing antibody responses against Wuhan and UK/B.1.1.7 SARS-CoV-2 variants. This two-component nanoparticle vaccine can now be further developed to help alleviate the burden of COVID-19. IMPORTANCE Vaccination is essential to reduce disease severity and limit the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Protein-based vaccines are useful to vaccinate the world population and to boost immunity against emerging variants. Their safety profiles, production costs, and vaccine storage temperatures are advantageous compared to mRNA and adenovirus vector vaccines. Here, we use the versatile and scalable baculovirus expression vector system to generate a two-component nanoparticle vaccine to induce potent neutralizing antibody responses against SARS-CoV-2 variants. These nanoparticle vaccines can be quickly adapted as boosters by simply updating the antigen component.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Nanopartículas/metabolismo , SARS-CoV-2/metabolismo , Animales , COVID-19/inmunología , Femenino , Glicosilación , Ratones , Ratones Endogámicos BALB C , SARS-CoV-2/inmunología , Células Sf9 , Vacunas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA