Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1438: 127-133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37845451

RESUMEN

The aim of this review is to stimulate readers to undertake appropriate investigations of the mechanism for a possible oxygen effect in FLASH. FLASH is a method of delivery of radiation that empirically, in animal models, appears to decrease the impact of radiation on normal tissues while retaining full effect on tumors. This has the potential for achieving a significantly increased effectiveness of radiation therapy. The mechanism is not known but, especially in view of the prominent role that oxygen has in the effects of radiation, investigations of mechanisms of FLASH have often focused on impacts of FLASH on oxygen levels. We and others have previously shown that simple differential depletion of oxygen directly changing the response to radiation is not a likely mechanism. In this review we consider how time-varying changes in oxygen levels could account for the FLASH effect by changing oxygen-dependent signaling in cells. While the methods of delivering FLASH are still evolving, current approaches for FLASH can differ from conventional irradiation in several ways that can impact the pattern of oxygen consumption: the rate of delivery of the radiation (40 Gy/s vs. 0.1 Gy/s), the time over which each fraction is delivered (e.g., <0.5 s. vs. 300 s), the delivery in pulses, the number of fractions, the size of the fractions, and the total duration of treatment. Taking these differences into account and recognizing that cell signaling is an intrinsic component of the need for cells to maintain steady-state conditions and, therefore, is activated by small changes in the environment, we delineate the potential time dependent changes in oxygen consumption and overview the cell signaling pathways whose differential activation by FLASH could account for the observed biological effects of FLASH. We speculate that the most likely pathways are those involved in repair of damaged DNA.


Asunto(s)
Neoplasias , Oxígeno , Animales , Oxígeno/metabolismo , Neoplasias/radioterapia , Daño del ADN , Dosificación Radioterapéutica
2.
Adv Exp Med Biol ; 1395: 315-321, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36527655

RESUMEN

The delivery of radiation at an ultra-high dose rate (FLASH) is an important new approach to radiotherapy (RT) that appears to be able to improve the therapeutic ratio by diminishing damage to normal tissues. While the mechanisms by which FLASH improves outcomes have not been established, a role involving molecular oxygen (O2) is frequently mentioned. In order to effectively determine if the protective effect of FLASH RT occurs via a differential direct depletion of O2 (compared to conventional radiation), it is essential to consider the known role of O2 in modifying the response of cells and tissues to ionising radiation (known as 'the oxygen effect'). Considerations include: (1) The pertinent reaction involves an unstable intermediate of radiation-damaged DNA, which either undergoes chemical repair to restore the DNA or reacts with O2, resulting in an unrepairable lesion in the DNA, (2) These reactions occur in the nuclear DNA, which can be used to estimate the distance needed for O2 to diffuse through the cell to reach the intermediates, (3) The longest lifetime that the reactive site of the DNA is available to react with O2 is 1-10 µsec, (4) Using these lifetime estimates and known diffusion rates in different cell media, the maximal distance that O2 could travel in the cytosol to reach the site of the DNA (i.e., the nucleus) in time to react are 60-185 nm. This calculation defines the volume of oxygen that is pertinent for the direct oxygen effect, (5) Therefore, direct measurements of oxygen to determine if FLASH RT operates through differential radiochemical depletion of oxygen will require the ability to measure oxygen selectively in a sphere of <200 nm, with a time resolution of the duration of the delivery of FLASH, (6) It also is possible that alterations of oxygen levels by FLASH could occur more indirectly by affecting oxygen-dependent cell signalling and/or cellular repair.


Asunto(s)
Daño del ADN , Oxígeno , Dosificación Radioterapéutica
3.
Adv Exp Med Biol ; 1269: 379-386, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33966246

RESUMEN

The effectiveness of blood transfusions can be impacted by storage and extensive processing techniques that involve treatment of red blood cells (RBCs) with pathogen reduction technologies (e.g., UV-light and chemical treatment), ex vivo stem cell derivation/maturation methods, and bioengineering of RBCs using nanotechnology. Therefore, there is a need to have methods that assess the evaluation of the effectiveness of transfusions to achieve their intended purpose: to increase oxygenation of critical tissues. Consequently, there has been intense interest in the development of techniques targeted at optimizing the assessment of RBC quality in preclinical and clinical settings. We provide a critical assessment of the ability of currently used methods to provide unambiguous information on oxygen levels in tissues and conclude that they cannot do this. This is because they are based on surrogates for the true goal of transfusion, which is to increase oxygenation of critical organs. This does not mean that they are valueless, but it does indicate that other methods are needed to provide direct measurements of oxygen in tissues. We report here on the initial results of a method that can provide direct assessment of the impact of the transfusion on tissue oxygen: EPR oximetry. It has the potential to provide such information in both preclinical and clinical settings for the assessment of blood quality posttransfusion.


Asunto(s)
Transfusión de Eritrocitos , Oxígeno , Transfusión Sanguínea , Eritrocitos , Oximetría
4.
Adv Exp Med Biol ; 1269: 301-308, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33966234

RESUMEN

Clinical measurements of O2 in tissues will inevitably provide data that are at best aggregated and will not reflect the inherent heterogeneity of O2 in tissues over space and time. Additionally, the nature of all existing techniques to measure O2 results in complex sampling of the volume that is sensed by the technique. By recognizing these potential limitations of the measures, one can focus on the very important and useful information that can be obtained from these techniques, especially data about factors that can change levels of O2 and then exploit these changes diagnostically and therapeutically. The clinical utility of such data ultimately needs to be verified by careful studies of outcomes related to the measured changes in levels of O2.


Asunto(s)
Consumo de Oxígeno , Oxígeno , Análisis de los Gases de la Sangre
5.
Appl Magn Reson ; 52(10): 1237-1260, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36267674

RESUMEN

This review is motivated by the exciting new area of radiation therapy using a phenomenon termed FLASH in which oxygen is thought to have a central role. Well-established principles of radiation biology and physics suggest that if oxygen has a strong role, it should be the level at the DNA. The key aspect discussed is the rate of oxygen diffusion. If oxygen freely diffuses into cells and rapidly equilibrates, then measurements in the extracellular compartment would enable FLASH to be investigated using existing methodologies that can readily measure oxygen in the extracellular compartment. EPR spin-label oximetry allows evaluation of the oxygen permeability coefficient across lipid bilayer membranes. It is established that simple fluid phase lipid bilayers are not barriers to oxygen transport. However, further investigations indicate that many physical and chemical (compositional) factor can significantly decrease this permeation. In biological cell plasma membranes, the lipid bilayer forms the matrix in which integral membrane proteins are immersed, changing organization and properties of the lipid matrix. To evaluate oxygen permeability coefficients across these complex membranes, oxygen permeation across all membrane domains and components must be considered. In this review, we consider many of the factors that affect (decrease) oxygen permeation across cell plasma membranes. Finally, we address the question, can the plasma membrane of the cell form a barrier to the free diffusion of oxygen into the cell interior? If there is a barrier then this must be considered in the investigations of the role of oxygen in FLASH.

6.
Appl Magn Reson ; 52(10): 1321-1342, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34744319

RESUMEN

OBJECTIVES: (1) Summarize revisions made to the implantable resonator (IR) design and results of testing to characterize biocompatibility;(2) Demonstrate safety of implantation and feasibility of deep tissue oxygenation measurement using electron paramagnetic resonance (EPR) oximetry. STUDY DESIGN: In vitro testing of the revised IR and in vivo implantation in rabbit brain and leg tissues. METHODS: Revised IRs were fabricated with 1-4 OxyChips with a thin wire encapsulated with two biocompatible coatings. Biocompatibility and chemical characterization tests were performed. Rabbits were implanted with either an IR with 2 oxygen sensors or a biocompatible-control sample in both the brain and hind leg. The rabbits were implanted with IRs using a catheter-based, minimally invasive surgical procedure. EPR oximetry was performed for rabbits with IRs. Cohorts of rabbits were euthanized and tissues were obtained at 1 week, 3 months, and 9 months after implantation and examined for tissue reaction. RESULTS: Biocompatibility and toxicity testing of the revised IRs demonstrated no abnormal reactions. EPR oximetry from brain and leg tissues were successfully executed. Blood work and histopathological evaluations showed no significant difference between the IR and control groups. CONCLUSIONS: IRs were functional for up to 9 months after implantation and provided deep tissue oxygen measurements using EPR oximetry. Tissues surrounding the IRs showed no more tissue reaction than tissues surrounding the control samples. This pre-clinical study demonstrates that the IRs can be safely implanted in brain and leg tissues and that repeated, non-invasive, deep-tissue oxygen measurements can be obtained using in vivo EPR oximetry.

7.
Transfusion ; 58(1): 255-266, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29243830

RESUMEN

The US Food and Drug Administration (FDA) held a workshop on red blood cell (RBC) product regulatory science on October 6 and 7, 2016, at the Natcher Conference Center on the National Institutes of Health (NIH) Campus in Bethesda, Maryland. The workshop was supported by the National Heart, Lung, and Blood Institute, NIH; the Department of Defense; the Office of the Assistant Secretary for Health, Department of Health and Human Services; and the Center for Biologics Evaluation and Research, FDA. The workshop reviewed the status and scientific basis of the current regulatory framework and the available scientific tools to expand it to evaluate innovative and future RBC transfusion products. A full record of the proceedings is available on the FDA website (http://www.fda.gov/BiologicsBloodVaccines/NewsEvents/WorkshopsMeetingsConferences/ucm507890.htm). The contents of the summary are the authors' opinions and do not represent agency policy.


Asunto(s)
Eritrocitos , United States Food and Drug Administration , Adulto , Animales , Productos Biológicos , Conservación de la Sangre/normas , Seguridad de la Sangre/normas , Niño , Transfusión de Eritrocitos , Humanos , Modelos Animales , Ensayos Clínicos Controlados Aleatorios como Asunto , Reacción a la Transfusión , Estados Unidos , United States Food and Drug Administration/normas
8.
Adv Exp Med Biol ; 1072: 233-239, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30178351

RESUMEN

This paper considers the critical role that academics can have in the development of clinical innovations and especially how their impact can be optimized. The focus should be on establishing the safety and efficacy of new approaches while also incorporating human factors and human use considerations into the inventions. It is very advantageous to work in concert with the end-users (operators and clinicians) to help ensure that the innovation will be useful and feasible to be incorporated into actual clinical practice as intended. This strategy enables developments to tackle real clinical needs by providing novel strategies to improve patient care while using solutions that fit into clinical practice and that are welcomed by patients and clinical staff. These principles are illustrated by a case study of the development of clinical in vivo EPR oximetry.


Asunto(s)
Diseño de Equipo , Invenciones , Oximetría/métodos , Ingeniería Biomédica , Tecnología Biomédica , Humanos
9.
Adv Exp Med Biol ; 977: 297-312, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28685459

RESUMEN

Clinical EPR spectroscopy is emerging as an important modality, with the potential to be used in standard clinical practice to determine the extent of hypoxia in tissues and whether hypoxic tissues respond to breathing enriched oxygen during therapy. Oximetry can provide important information useful for prognosis and to improve patient outcomes. EPR oximetry has many potential advantages over other ways to measure oxygen in tissues, including directly measuring oxygen in tissues and being particularly sensitive to low oxygen, repeatable, and non-invasive after an initial injection of the EPR-sensing material is placed in the tumor. The most immediately available oxygen sensor is India ink, where two classes of carbon (carbon black and charcoal) have been identified as having acceptable paramagnetic properties for oximetry. While India ink has a long history of safe use in tattoos, a systematic research search regarding its safety for marking tissues for medical uses and an examination of the evidence that differentiates between ink based on charcoal or carbon black has not been conducted. METHODS: Using systematic literature search techniques, we searched the PubMed and Food and Drug Administration databases, finding ~1000 publications reporting on adverse events associated with India/carbon based inks. The detailed review of outcomes was based on studies involving >16 patients, where the ink was identifiable as carbon black or charcoal. RESULTS: Fifty-six studies met these criteria. There were few reports of complications other than transient and usually mild discomfort and bleeding at injection, and there was no difference in charcoal vs. carbon black India ink. CONCLUSIONS: India ink was generally well tolerated by patients and physicians reported that it was easy to use in practice and used few resources. The risk is low enough to justify its use as an oxygen sensor in clinical practice.


Asunto(s)
Técnicas Biosensibles/métodos , Carbono , Espectroscopía de Resonancia por Spin del Electrón , Oximetría/métodos , Animales , Técnicas Biosensibles/instrumentación , Carbono/efectos adversos , Carbono/análisis , Colorantes/efectos adversos , Colorantes/análisis , Espectroscopía de Resonancia por Spin del Electrón/efectos adversos , Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Espectroscopía de Resonancia por Spin del Electrón/métodos , Humanos , Oximetría/efectos adversos
10.
Adv Exp Med Biol ; 923: 113-120, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27526132

RESUMEN

Given the clinical evidence that hypoxic tumors are more resistant to standard therapy and that adjusting therapies can improve the outcomes for the subpopulation with hypoxic tumors, in vivo methods to measure oxygen in tissue have important clinical potential. This paper provides the rationale for and methodological strategies to use comparative effectiveness research to evaluate oximetry for cancer care. Nine oximetry methods that have been used in vivo to measure oxygen in human tumors are evaluated on several clinically relevant criteria to illustrate the value of applying comparative effectiveness to oximetry.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias/metabolismo , Oximetría/métodos , Oxígeno/metabolismo , Humanos , Neoplasias/patología , Neoplasias/terapia , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Resultado del Tratamiento , Hipoxia Tumoral , Microambiente Tumoral
11.
Adv Exp Med Biol ; 923: 367-374, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27526165

RESUMEN

A number of studies have reported benefits associated with the application of hyperbaric oxygen treatment (HBO) delivered immediately prior to radiation therapy. While these studies provide evidence that pre-treatment with HBO may be beneficial, no measurements of intratumoral pO2 were carried out and they do not directly link the apparent benefits to decreased hypoxic fractions at the time of radiation therapy. While there is empirical evidence and some theoretical basis for HBO to enhance radiation therapy, without direct and repeated measurements of its effects on pO2, it is unlikely that the use of HBO can be understood and optimized for clinical applications. In vivo EPR oximetry is a technique uniquely capable of providing repeated direct measurements of pO2 through a non-invasive procedure in both animal models and human patients. In order to evaluate the ability of pretreatment with HBO to elevate tumor pO2, a novel small animal hyperbaric chamber system was constructed that allows simultaneous in vivo EPR oximetry. This chamber can be placed within the EPR magnet and is equipped with a variety of ports for multiplace gas delivery, thermoregulation, delivery of anesthesia, physiologic monitoring, and EPR detection. Initial measurements were performed in a subcutaneous RIF-1 tumor model in C3H/HeJ mice. The mean baseline pO2 value was 6.0 ± 1.2 mmHg (N = 7) and responses to two atmospheres absolute pressure HBO varied considerably across subjects, within tumors, and over time. When an increase in pO2 was observed, the effect was transient in all but one case, with durations lasting from 5 min to over 20 min, and returned to baseline levels during HBO administration. These results indicate that without direct measurements of pO2 in the tissue of interest, it is likely to be difficult to know the effects of HBO on actual tissue pO2.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Oxigenoterapia Hiperbárica , Terapia Neoadyuvante , Neoplasias Experimentales/terapia , Oximetría/métodos , Oxígeno/metabolismo , Tolerancia a Radiación , Tejido Subcutáneo/metabolismo , Animales , Línea Celular Tumoral , Ratones Endogámicos C3H , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Radioterapia Adyuvante , Tejido Subcutáneo/patología , Factores de Tiempo
12.
Adv Exp Med Biol ; 923: 95-104, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27526130

RESUMEN

The first systematic multi-center study of the clinical use of EPR oximetry has begun, with funding as a PPG from the NCI. Using particulate oxygen sensitive EPR, materials in three complementary forms (India Ink, "OxyChips", and implantable resonators) the clinical value of the technique will be evaluated. The aims include using repeated measurement of tumor pO2 to monitor the effects of treatments on tumor pO2, to use the measurements to select suitable subjects for the type of treatment including the use of hyperoxic techniques, and to provide data that will enable existing clinical techniques which provide data relevant to tumor pO2 but which cannot directly measure it to be enhanced by determining circumstances where they can give dependable information about tumor pO2.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carbono/administración & dosificación , Espectroscopía de Resonancia por Spin del Electrón , Metaloporfirinas/administración & dosificación , Neoplasias/terapia , Oximetría/métodos , Oxígeno/metabolismo , Bélgica , Georgia , Humanos , Neoplasias/metabolismo , Neoplasias/patología , New Hampshire , Presión Parcial , Valor Predictivo de las Pruebas , Resultado del Tratamiento , Hipoxia Tumoral , Microambiente Tumoral
13.
Int J Cancer ; 136(7): 1688-96, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25111969

RESUMEN

Hypoxia is a critical hallmark of glioma, and significantly compromises treatment efficacy. Unfortunately, techniques for monitoring glioma pO2 to facilitate translational research are lacking. Furthermore, poor prognosis of patients with malignant glioma, in particular glioblastoma multiforme, warrant effective strategies that can inhibit hypoxia and improve treatment outcome. EPR oximetry using implantable resonators was implemented for monitoring pO2 in normal cerebral tissue and U251 glioma in mice. Breathing carbogen (95% O2 + 5% CO2 ) was tested for hyperoxia in the normal brain and glioma xenografts. A new strategy to inhibit glioma growth by rationally combining gemcitabine and MK-8776, a cell cycle checkpoint inhibitor, was also investigated. The mean pO2 of left and right hemisphere were ∼56-69 mmHg in the normal cerebral tissue of mice. The mean baseline pO2 of U251 glioma on the first and fifth day of measurement was 21.9 ± 3.7 and 14.1 ± 2.4 mmHg, respectively. The mean brain pO2 including glioma increased by at least 100% on carbogen inhalation, although the response varied between the animals over days. Treatment with gemcitabine + MK-8776 significantly increased pO2 and inhibited glioma growth assessed by MRI. In conclusion, EPR oximetry with implantable resonators can be used to monitor the efficacy of carbogen inhalation and chemotherapy on orthotopic glioma in mice. The increase in glioma pO2 of mice breathing carbogen can be used to improve treatment outcome. The treatment with gemcitabine + MK-8776 is a promising strategy that warrants further investigation.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Dióxido de Carbono/administración & dosificación , Glioma/metabolismo , Inhalación , Consumo de Oxígeno , Oxígeno/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamiento farmacológico , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Modelos Animales de Enfermedad , Glioma/diagnóstico , Glioma/tratamiento farmacológico , Humanos , Hipoxia/metabolismo , Imagen por Resonancia Magnética , Masculino , Ratones , Oximetría , Pirazoles/administración & dosificación , Pirazoles/farmacología , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
14.
FASEB J ; 27(6): 2521-30, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23482635

RESUMEN

Burn injury causes a major systemic catabolic response that is associated with mitochondrial dysfunction in skeletal muscle. We investigated the effects of the mitochondria-targeted peptide antioxidant Szeto-Schiller 31 (SS-31) on skeletal muscle in a mouse burn model using in vivo phosphorus-31 nuclear magnetic resonance ((31)P NMR) spectroscopy to noninvasively measure high-energy phosphate levels; mitochondrial aconitase activity measurements that directly correlate with TCA cycle flux, as measured by gas chromatography mass spectrometry (GC-MS); and electron paramagnetic resonance (EPR) to assess oxidative stress. At 6 h postburn, the oxidative ATP synthesis rate was increased 5-fold in burned mice given a single dose of SS-31 relative to untreated burned mice (P=0.002). Furthermore, SS-31 administration in burned animals decreased mitochondrial aconitase activity back to control levels. EPR revealed a recovery in redox status of the SS-31-treated burn group compared to the untreated burn group (P<0.05). Our multidisciplinary convergent results suggest that SS-31 promotes recovery of mitochondrial function after burn injury by increasing ATP synthesis rate, improving mitochondrial redox status, and restoring mitochondrial coupling. These findings suggest use of noninvasive in vivo NMR and complementary EPR offers an approach to monitor the effectiveness of mitochondrial protective agents in alleviating burn injury symptoms.


Asunto(s)
Antioxidantes/farmacología , Quemaduras/tratamiento farmacológico , Quemaduras/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Oligopéptidos/farmacología , Aconitato Hidratasa/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Ciclo del Ácido Cítrico , Espectroscopía de Resonancia por Spin del Electrón , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Músculo Esquelético/lesiones , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos
15.
Adv Exp Med Biol ; 812: 73-79, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24729217

RESUMEN

EPR oximetry, which enables reliable, accurate, and repeated measurements of the partial pressure of oxygen in tissues, provides a unique opportunity to investigate the role of oxygen in the pathogenesis and treatment of several diseases including cancer, stroke, and heart failure. Building on significant advances in the in vivo application of EPR oximetry for small animal models of disease, we are developing suitable probes and instrumentation required for use in human subjects. Our laboratory has established the feasibility of clinical EPR oximetry in cancer patients using India ink, the only material presently approved for clinical use. We now are developing the next generation of probes, which are both superior in terms of oxygen sensitivity and biocompatibility including an excellent safety profile for use in humans. Further advances include the development of implantable oxygen sensors linked to an external coupling loop for measurements of deep-tissue oxygenations at any depth, overcoming the current limitation of 10 mm. This paper presents an overview of recent developments in our ability to make meaningful measurements of oxygen partial pressures in human subjects under clinical settings.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Oximetría/métodos , Marcadores de Spin , Animales , Modelos Animales
16.
Adv Exp Med Biol ; 812: 81-86, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24729218

RESUMEN

The use of electron paramagnetic resonance (EPR) oximetry for oxygen measurements in deep tissues (>1 cm) is challenging due to the limited penetration depth of the microwave energy. To overcome this limitation, implantable resonators, having a small (0.5 mm diameter) sensory loop containing the oxygen-sensing paramagnetic material connected by a pair of twisted copper wire to a coupling loop (8-10 mm diameter), have been developed, which enable repeated measurements of deep-tissue oxygen levels (pO2, partial pressure of oxygen) in the brain and tumors of rodents. In this study, we have demonstrated the feasibility of measuring dynamic changes in pO2 in the heart and lung of rats using deep-tissue implantable oxygen sensors. The sensory loop of the resonator contained lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) crystals embedded in polydimethylsiloxane (PDMS) polymer and was implanted in the myocardial tissue or lung pleura. The external coupling loop was secured subcutaneously above chest. The rats were exposed to different breathing gas mixtures while undergoing EPR measurements. The results demonstrated that implantable oxygen sensors provide reliable measurements of pO2 in deep tissues such as heart and lung under adverse conditions of cardiac and respiratory motions.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Pulmón/metabolismo , Miocardio/metabolismo , Oximetría/métodos , Oxígeno/metabolismo , Animales , Dimetilpolisiloxanos , Ratas , Ratas Sprague-Dawley
17.
Adv Exp Med Biol ; 812: 97-103, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24729220

RESUMEN

The feasibility of EPR oximetry using a single-probe implantable oxygen sensor (ImOS) was tested for repeated measurement of pO2 in skeletal muscle and ectopic 9L tumors in rats. The ImOS (50 mm length) were constructed using nickel-chromium alloy wires, with lithium phthalocyanine (LiPc, oximetry probe) crystals loaded in the sensor loop and coated with AF 2400(®) Teflon. These ImOS were implanted into the skeletal muscle in the thigh and subcutaneous 9L tumors. Dynamic changes in tissue pO2 were assessed by EPR oximetry at baseline, during tumor growth, and repeated hyperoxygenation with carbogen breathing. The mean skeletal muscle pO2 of normal rats was stable and significantly increased during carbogen inhalation in experiments repeated for 12 weeks. The 9L tumors were hypoxic with a tissue pO2 of 12.8 ± 6.4 mmHg on day 1; however, the response to carbogen inhalation varied among the animals. A significant increase in the glioma pO2 was observed during carbogen inhalation on day 9 and day 14 only. In summary, EPR oximetry with ImOS allowed direct and longitudinal oxygen measurements in deep muscle tissue and tumors. The heterogeneity of 9L tumors in response to carbogen highlights the need to repeatedly monitor pO2 to confirm tumor oxygenation so that such changes can be taken into account in planning therapies and interpreting results.


Asunto(s)
Técnicas Biosensibles , Neoplasias Encefálicas/metabolismo , Dióxido de Carbono/administración & dosificación , Espectroscopía de Resonancia por Spin del Electrón/métodos , Glioma/metabolismo , Músculo Esquelético/metabolismo , Oximetría/métodos , Oxígeno/metabolismo , Administración por Inhalación , Animales , Estudios Longitudinales , Masculino , Oxígeno/administración & dosificación , Ratas , Ratas Endogámicas F344
18.
Adv Exp Med Biol ; 812: 105-111, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24729221

RESUMEN

A lack of strategy to counteract hypoxia (pO2 < 10-15 mmHg) and technique to repeatedly measure tumor pO2 has restricted therapeutic optimization. We report the results obtained with an innovative anti-angiogenic strategy of recurrent low-dose (metronomic) chemotherapy to modulate hypoxia and growth of the Head and Neck tumor xenografts.The FaDu tumors were established in the flank of immune deficient mice and EPR oximetry with lithium phthalocyanine crystals was used to follow the temporal changes in tumor pO2 on treatment with gemcitabine including controls for three weeks. The FaDu tumors were hypoxic with a baseline (pre-treatment) pO2 of 2-8 mmHg. A transient increase in the tumor pO2 was evident on day 3 on treatment with a conventional schedule of gemcitabine (150 mg/kg, d1, d8, d15). No significant change in the tumor pO2 on treatment with metronomic gemcitabine (25 mg/kg on d1, d3, d5 for 3 weeks) was observed. However, tumor pO2 increased significantly on d15-d18 during treatment with a metronomic schedule of 15 mg/kg gemcitabine (d1, d3, d5 for 3 weeks). A modest decrease in the tumor growth was evident on treatment with conventional gemcitabine. Notably, tumor growth was significantly inhibited by metronomic (25 and 15 mg/kg) gemcitabine treatment. The immunohistochemistry (IHC) analyses of the tumor samples indicate a decrease in HIF-1α and TSP-1 on treatment with metronomic gemcitabine.In conclusion, a significant inhibition of tumor growth on treatment with metronomic gemcitabine was observed; however, the increase in pO2 was dose dependent. EPR oximetry can be used to follow the temporal changes in tumor pO2 to identify a therapeutic window on treatment with metronomic chemotherapy for potential combination with radiotherapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Desoxicitidina/análogos & derivados , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Oxígeno/metabolismo , Animales , Desoxicitidina/uso terapéutico , Relación Dosis-Respuesta a Droga , Espectroscopía de Resonancia por Spin del Electrón , Neoplasias de Cabeza y Cuello/metabolismo , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Gemcitabina
19.
Radiat Environ Biophys ; 53(2): 221-32, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24519326

RESUMEN

The principle of biodosimetry is to utilize changes induced in the individual by ionizing radiation to estimate the dose and, if possible, to predict or reflect the clinically relevant response, i.e., the biological consequences of the dose. Ideally, the changes should be specific for ionizing radiation, and the response should be unaffected by prior medical or physiological variations among subjects, including changes that might be caused by the stress and trauma from a radiation event. There are two basic types of biodosimetry with different and often complementary characteristics: those based on changes in biological parameters such as gene activation or chromosomal abnormalities and those based on physical changes in tissues (detected by techniques such as EPR). In this paper, we consider the applicability of the various techniques for different scenarios: small- and large-scale exposures to levels of radiation that could lead to the acute radiation syndrome and exposures with lower doses that do not need immediate care, but should be followed for evidence of long-term consequences. The development of biodosimetry has been especially stimulated by the needs after a large-scale event where it is essential to have a means to identify those individuals who would benefit from being brought into the medical care system. Analyses of the conventional methods officially recommended for responding to such events indicate that these methods are unlikely to achieve the results needed for timely triage of thousands of victims. Emerging biodosimetric methods can fill this critically important gap.


Asunto(s)
Radiobiología/métodos , Radiometría/métodos , Animales , Exposición a Riesgos Ambientales/análisis , Humanos , Dosis de Radiación
20.
Radiat Environ Biophys ; 53(2): 335-46, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24711003

RESUMEN

The management of radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation will rely critically on the availability and use of suitable biodosimetry methods. In vivo electron paramagnetic resonance (EPR) tooth dosimetry has a number of valuable and unique characteristics and capabilities that may help enable effective triage. We have produced a prototype of a deployable EPR tooth dosimeter and tested it in several in vitro and in vivo studies to characterize the performance and utility at the state of the art. This report focuses on recent advances in the technology, which strengthen the evidence that in vivo EPR tooth dosimetry can provide practical, accurate, and rapid measurements in the context of its intended use to help triage victims in the event of an improvised nuclear device. These advances provide evidence that the signal is stable, accurate to within 0.5 Gy, and can be successfully carried out in vivo. The stability over time of the radiation-induced EPR signal from whole teeth was measured to confirm its long-term stability and better characterize signal behavior in the hours following irradiation. Dosimetry measurements were taken for five pairs of natural human upper central incisors mounted within a simple anatomic mouth model that demonstrates the ability to achieve 0.5 Gy standard error of inverse dose prediction. An assessment of the use of intact upper incisors for dose estimation and screening was performed with volunteer subjects who have not been exposed to significant levels of ionizing radiation and patients who have undergone total body irradiation as part of bone marrow transplant procedures. Based on these and previous evaluations of the performance and use of the in vivo tooth dosimetry system, it is concluded that this system could be a very valuable resource to aid in the management of a massive radiological event.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Traumatismos por Radiación , Radiometría/métodos , Diente/efectos de la radiación , Triaje , Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Diseño de Equipo , Humanos , Incisivo/efectos de la radiación , Modelos Biológicos , Radiometría/instrumentación , Factores de Tiempo , Irradiación Corporal Total
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA