RESUMEN
Tire wear particles (TWPs) containing tire wear chemicals (TWCs) are of global concern due to their large emissions and potential toxicity. However, TWP contributions to urban fine particles are poorly understood. Here, 72 paired gas-phase and PM2.5 samples were collected in the urban air of the Pearl River Delta, China. The concentrations of 54 compounds were determined, and 28 TWCs were detected with total concentrations of 3130-317,000 pg/m3. Most p-phenylenediamines (PPDs) were unstable in solvent, likely leading to their low detection rates. The TWCs were mainly (73 ± 26%) in the gas phase. 2-OH-benzothiazole contributed 82 ± 21% of the gas-phase TWCs and benzothiazole-2-sulfonic acid contributed 74 ± 18% of the TWCs in PM2.5. Guangzhou and Foshan were "hotspots" for atmospheric TWCs. Most TWC concentrations significantly correlated with the road length nearby. More particulate TWCs were observed than model predictions, probably due to the impacts of nonexchangeable portion and sampling artifacts. Source apportionment combined with characteristic molecular markers indicated that TWPs contributed 13 ± 7% of urban PM2.5. Our study demonstrates that TWPs are important contributors to urban air pollution that could pose risks to humans. There is an urgent need to develop strategies to decrease TWP emissions, along with broader urban air quality improvement strategies.
RESUMEN
Metal-organic frameworks (MOFs) are promising adsorbents for legacy per-/polyfluoroalkyl substances (PFASs), but they are being replaced by emerging PFASs. The effects of varying carbon chains and functional groups of emerging PFASs on their adsorption behavior on MOFs require attention. This study systematically revealed the structure-adsorption relationships and interaction mechanisms of legacy and emerging PFASs on a typical MOF MIL-101(Cr). It also presented an approach reflecting the average electronegativity of PFAS moieties for adsorption prediction. We demonstrated that short-chain or sulfonate PFASs showed higher adsorption capacities (µmol/g) on MIL-101(Cr) than their long-chain or carboxylate counterparts, respectively. Compared with linear PFASs, their branched isomers were found to exhibit a higher adsorption potential on MIL-101(Cr). In addition, the introduction of ether bond into PFAS molecule (e.g., hexafluoropropylene oxide dimeric acid, GenX) increased the adsorption capacity, while the replacement of CF2 moieties in PFAS molecule with CH2 moieties (e.g., 6:2 fluorotelomer sulfonate, 6:2 FTS) caused a decrease in adsorption. Divalent ions (such as Ca2+ and SO42-) and solution pH have a greater effect on the adsorption of PFASs containing ether bonds or more CF2 moieties. PFAS adsorption on MIL-101(Cr) was governed by electrostatic interaction, complexation, hydrogen bonding, π-CF interaction, and π-anion interaction as well as steric effects, which were associated with the molecular electronegativity and chain length of each PFAS. The average electronegativity of individual moieties (named Me) for each PFAS was estimated and found to show a significantly positive correlation with the corresponding adsorption capacity on MIL-101(Cr). The removal rates of major PFASs in contaminated groundwater by MIL-101(Cr) were also correlated with the corresponding Me values. These findings will assist with the adsorption prediction for a wide range of PFASs and contribute to tailoring efficient MOF materials.
Asunto(s)
Fluorocarburos , Estructuras Metalorgánicas , Adsorción , Fluorocarburos/química , Estructuras Metalorgánicas/química , Carbono/química , Contaminantes Químicos del Agua/químicaRESUMEN
Polychlorinated biphenyls (PCBs) were not widely manufactured or used in China before they became the subject of international bans on production. Recent work has shown that they have reached China associated with imported wastes and that there are considerable unintentional sources of PCBs that have only recently been identified. As such, it was hypothesized that the source inventory and profile of PCBs may be different or unique in China, compared to countries where they were widely used and which have been widely studied. For the first time in this study, we undertook a complete analysis of 209 PCB congeners and assessed the contribution of unintentionally produced PCBs (UP-PCBs) in the atmosphere of China, using polyurethane foam passive air samplers (PUF-PAS) deployed across a wide range of Chinese locations. ∑209 PCBs ranged from 9 to 6856 pg/m3 (median: 95 pg/m3) during three deployments in 2016-2017. PCB 11 was one of the most detected congeners, contributing 33 ± 19% to ∑209 PCBs. The main sources to airborne PCBs in China were estimated and ranked as pigment/painting (34%), metallurgical industry/combustion (31%), e-waste (23%), and petrochemical/plastic industry (6%). For typical Aroclor-PCBs, e-waste sources were dominated (>50%). Results from our study indicate that UP-PCBs have become the controlling source in the atmosphere of China, and an effective control strategy is urgently needed to mitigate emissions from multiple industrial sources.
Asunto(s)
Contaminantes Atmosféricos , Bifenilos Policlorados , Arocloros , Atmósfera , China , Monitoreo del AmbienteRESUMEN
This study aimed for the first time to reconstruct historical exposure profiles for PCBs to the Chinese population, by examining the combined effect of changing temporal emissions and dietary transition. A long-term (1930-2100) dynamic simulation of human exposure using realistic emission scenarios, including primary emissions, unintentional emissions, and emissions from e-waste, combined with dietary transition trends was conducted by a multimedia fate model (BETR-Global) linked to a bioaccumulation model (ACC-HUMAN). The model predicted an approximate 30-year delay of peak body burden for PCB-153 in a 30-year-old Chinese female, compared to their European counterpart. This was mainly attributed to a combination of change in diet and divergent emission patterns in China. A fish-based diet was predicted to result in up to 8 times higher body burden than a vegetable-based diet (2010-2100). During the production period, a worst-case scenario assuming only consumption of imported food from a region with more extensive production and usage of PCBs would result in up to 4 times higher body burden compared to consumption of only locally produced food. However, such differences gradually diminished after cessation of production. Therefore, emission reductions in China alone may not be sufficient to protect human health from PCB-like chemicals, particularly during the period of mass production. The results from this study illustrate that human exposure is also likely to be dictated by inflows of PCBs via the environment, waste, and food.
Asunto(s)
Bifenilos Policlorados , Adulto , Animales , Carga Corporal (Radioterapia) , China , Exposición Dietética , Femenino , Humanos , Modelos TeóricosRESUMEN
Polychlorinated biphenyls (PCBs) are industrial organic contaminants identified as persistent, bioaccumulative, toxic (PBT), and subject to long-range transport (LRT) with global scale significance. This study focuses on a reconstruction and prediction for China of long-term emission trends of intentionally and unintentionally produced (UP) ∑7PCBs (UP-PCBs, from the manufacture of steel, cement and sinter iron) and their re-emissions from secondary sources (e.g., soils and vegetation) using a dynamic fate model (BETR-Global). Contemporary emission estimates combined with predictions from the multimedia fate model suggest that primary sources still dominate, although unintentional sources are predicted to become a main contributor from 2035 for PCB-28. Imported e-waste is predicted to play an increasing role until 2020-2030 on a national scale due to the decline of intentionally produced (IP) emissions. Hypothetical emission scenarios suggest that China could become a potential source to neighboring regions with a net output of â¼0.4 t year-1 by around 2050. However, future emission scenarios and hence model results will be dictated by the efficiency of control measures.
Asunto(s)
Monitoreo del Ambiente , Bifenilos Policlorados , China , Modelos Teóricos , Suelo , AceroRESUMEN
Widespread use of organic chemicals in household and personal care products (HPCPs) and their discharge into aquatic systems means reliable, robust techniques to monitor environmental concentrations are needed. The passive sampling approach of diffusive gradients in thin-films (DGT) is developed here and demonstrated to provide in situ quantitative and time-weighted average (TWA) measurement of these chemicals in waters. The novel technique is developed for HPCPs, including preservatives, antioxidants and disinfectants, by evaluating the performance of different binding agents. Ultrasonic extraction of binding gels in acetonitrile gave good and consistent recoveries for all test chemicals. Uptake by DGT with HLB (hydrophilic-lipophilic-balanced) as the binding agent was relatively independent of pH (3.5-9.5), ionic strength (0.001-0.1 M) and dissolved organic matter (0-20 mg L-1), making it suitable for applications across a wide range of environments. Deployment time and diffusion layer thickness dependence experiments confirmed DGT accumulated chemicals masses are consistent with theoretical predictions. The technique was further tested and applied in the influent and effluent of a wastewater treatment plant. Results were compared with conventional grab-sampling and 24-h-composited samples from autosamplers. DGT provided TWA concentrations over up to 18 days deployment, with minimal effects from biofouling or the diffusive boundary layer. The field application demonstrated advantages of the DGT technique: it gives in situ analyte preconcentration in a simple matrix, with more quantitative measurement of the HPCP analytes.
Asunto(s)
Monitoreo del Ambiente , Aguas Residuales , Difusión , Concentración OsmolarRESUMEN
Elevated concentrations of various industrial-use Persistent Organic Pollutants (POPs), such as polychlorinated biphenyls (PCBs), have been reported in some developing areas in subtropical and tropical regions known to be destinations of e-waste. We used a recent inventory of the global generation and exports of e-waste to develop various global scale emission scenarios for industrial-use organic contaminants (IUOCs). For representative IUOCs (RIUOCs), only hypothetical emissions via passive volatilization from e-waste were considered whereas for PCBs, historical emissions throughout the chemical life-cycle (i.e., manufacturing, use, disposal) were included. The environmental transport and fate of RIUOCs and PCBs were then simulated using the BETR Global 2.0 model. Export of e-waste is expected to increase and sustain global emissions beyond the baseline scenario, which assumes no export. A comparison between model predictions and observations for PCBs in selected recipient regions generally suggests a better agreement when exports are accounted for. This study may be the first to integrate the global transport of IUOCs in waste with their long-range transport in air and water. The results call for integrated chemical management strategies on a global scale.
Asunto(s)
Contaminantes Atmosféricos , Residuos Electrónicos , Países en Desarrollo , Contaminación Ambiental/análisis , Modelos Teóricos , Bifenilos Policlorados/análisisRESUMEN
SESAMe v3.3, a spatially explicit multimedia fate model for China, is a tool suggested to support quantitative risk assessment for national scale chemical management. The key advantage over the previous version SESAMe v3.0 is consideration of spatially varied environmental pH. We evaluate the model performance using estimates of emission from total industry usage of three UV filters (benzophenone-3, octocrylene, and octyl methoxycinnamate) and three antimicrobials (triclosan, triclocarban, and climbazole). The model generally performs well for the six case study chemicals as shown by the comparison between predictions and measurements. The importance of accounting for chemical ionization is demonstrated with the fate and partitioning of both triclosan and climbazole sensitivity to environmental pH. The model predicts ionizable chemicals (triclosan, climbazole, benzophenone-3) to primarily partition into soils at steady state, despite hypothetically only being released to freshwaters, as a result of agricultural irrigation by freshwater. However, further model calibration is needed when more field data becomes available for soils and sediments and for larger areas of water. As an example, accounting for the effect of pH in the environmental risk assessment of triclosan, limited freshwater areas (0.03% or ca. 55 km(2)) in mainland China are modeled to exceed its conservative environmental no-effect threshold. SESAMe v3.3 can be used to support the development of chemical risk assessment methodologies with the spatial aspects of the model providing a guide to the identification regions of interest in which to focus monitoring campaigns or develop a refined risk assessment.
Asunto(s)
Monitoreo del Ambiente , Multimedia , China , Agua Dulce , Modelos Teóricos , Suelo , Contaminantes Químicos del AguaRESUMEN
SESAMe v3.0, a spatially explicit multimedia fate model with 50 × 50 km(2) resolution, has been developed for China to predict environmental concentrations of benzo[a]pyrene (BaP) using an atmospheric emission inventory for 2007. Model predictions are compared with environmental monitoring data obtained from an extensive review of the literature. The model performs well in predicting multimedia concentrations and distributions. Predicted concentrations are compared with guideline values; highest values with some exceedances occur mainly in the North China Plain, Mid Inner Mongolia, and parts of three northeast provinces, Xi'an, Shanghai, and south of Jiangsu province, East Sichuan Basin, middle of Guizhou and Guangzhou. Two potential future scenarios have been assessed using SESAMe v3.0 for 2030 as BaP emission is reduced by (1) technological improvement for coal consumption in energy production and industry sectors in Scenario 1 (Sc1) and (2) technological improvement and control of indoor biomass burning for cooking and indoor space heating and prohibition of open burning of biomass in 2030 in Scenario 2 (Sc2). Sc2 is more efficient in reducing the areas with exceedance of guideline values. Use of SESAMe v3.0 provides insights on future research needs and can inform decision making on options for source reduction.
Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Benzo(a)pireno/análisis , Modelos Teóricos , China , Carbón Mineral , Culinaria , Monitoreo del AmbienteRESUMEN
A range of exposure models, which have been developed in Europe and North America, are playing an increasingly important role in priority setting and the risk assessment of chemicals. However, the applicability of these tools, which are based on Western dietary exposure pathways, to estimate chemical exposure to the Chinese population to support the development of a risk-based environment and exposure assessment, is unclear. Three frequently used modelling tools, EUSES, RAIDAR and ACC-HUMANsteady, have been evaluated in terms of human dietary exposure estimation by application to a range of chemicals with different physicochemical properties under both model default and Chinese dietary scenarios. Hence, the modelling approaches were assessed by considering dietary pattern differences only. The predicted dietary exposure pathways were compared under both scenarios using a range of hypothetical and current emerging contaminants. Although the differences across models are greater than those between dietary scenarios, model predictions indicated that dietary preference can have a significant impact on human exposure, with the relatively high consumption of vegetables and cereals resulting in higher exposure via plants-based foodstuffs under Chinese consumption patterns compared to Western diets. The selected models demonstrated a good ability to identify key dietary exposure pathways which can be used for screening purposes and an evaluative risk assessment. However, some model adaptations will be required to cover a number of important Chinese exposure pathways, such as freshwater farmed-fish, grains and pork.
Asunto(s)
Dieta Occidental , Exposición a Riesgos Ambientales , Contaminantes Ambientales/administración & dosificación , Modelos Teóricos , China , Contaminantes Ambientales/toxicidad , Humanos , Medición de RiesgoRESUMEN
Chemical additives are important components in commercial microplastics and their leaching behaviour has been widely studied. However, little is known about the potential effect of additives on the adsorption/desorption behaviour of pollutants on microplastics and their subsequent role as vectors for pollutant transport in the environment. In this study, two types of commercial polyvinyl chloride (PVC1 and PVC2) microplastics were aged by UV irradiation and biotic modification via biofilm colonization to investigate the adsorption and desorption behaviour of bisphenol A (BPA). Surface cracks and new functional groups (e.g., O-H) were found on PVC1 after UV irradiation, which increased available adsorption sites and enhanced Hâbonding interaction, resulting in an adsorption capacity increase from 1.28 µg/L to 1.85 µg/L. However, the adsorption and desorption capacity not showed significant changes for PVC2, which might be related to the few characteristic changes after UV aging with the protection of light stabilizers and antioxidants. The adsorption capacity ranged from 1.28 µg/L to 2.06 µg/L for PVC1 and PVC2 microplastics, and increased to 1.62 µg/L-2.95 µg/L after colonization by biofilms. The increased adsorption ability might be related to the N-H functional group, amide groups generated by microorganisms enhancing the affinity for BPA. The opposite effect was observed for desorption. Plasticizers can be metabolized during biofilm formation processes and might play an important role in microorganism colonization. In addition, antioxidants and UV stabilizers might also indirectly influence the colonization of microorganisms' on microplastics by controlling the degree to which PVC microplastics age under UV. The amount of biomass loading on the microplastics would further alter the adsorption/desorption behaviour of contaminants. This study provides important new insights into the evaluation of the fate of plastic particles in natural environments.
Asunto(s)
Compuestos de Bencidrilo , Biopelículas , Microplásticos , Fenoles , Cloruro de Polivinilo , Rayos Ultravioleta , Contaminantes Químicos del Agua , Cloruro de Polivinilo/química , Compuestos de Bencidrilo/química , Fenoles/química , Adsorción , Microplásticos/química , Contaminantes Químicos del Agua/química , Plásticos/químicaRESUMEN
The ingestion of fruits containing perfluoroalkyl acids (PFAAs) presents potential hazards to human health. This study aimed to fill knowledge gaps concerning the tissue-specific distribution patterns and bioaccumulation behavior of PFAAs and their isomers, alternatives, and precursors (collectively as per-/polyfluoroalkyl substances, PFASs) within citrus trees growing in contaminated fields. It also assessed the potential contribution of precursor degradation to human exposure risk of PFASs. High concentrations of total target PFASs (∑PFASstarget, 92.45-7496.16 ng/g dw) and precursors measured through the total oxidizable precursor (TOP) assay (130.80-13979.21 ng/g dw) were found in citrus tree tissues, and short-chain PFASs constituted the primary components. The total PFASs concentrations followed the order of leaves > fruits > branches, bark > wood, and peel > pulp > seeds. The average contamination burden of peel (∑PFASstarget: 57.75%; precursors: 71.15%) was highest among fruit tissues. Bioaccumulation factors (BAFs) and translocation potentials of short-chain, branched, or carboxylate-based PFASs exceeded those of their relatively hydrophobic counterparts, while ether-based PFASs showed lower BAFs than similar PFAAs in above-ground tissues of citrus trees. In the risk assessment of residents consuming contaminated citruses, precursor degradation contributed approximately 36.07% to total PFASs exposure, and therefore should not be ignored.
Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Árboles , Bioacumulación , Fluorocarburos/análisis , Contaminantes Químicos del Agua/química , Medición de Riesgo , Ácidos Alcanesulfónicos/análisis , Monitoreo del AmbienteRESUMEN
Perfluorooctane sulfonate (PFOS) is a persistent, anionic and ubiquitous contaminant that undergoes long-range transport within the environment. Its behavior has attracted wide-range academic and regulatory attention. In this article, a mass balance model was employed to simulate PFOS concentrations in the mainstream of Haihe River water system, encompassing sluices and artificial rivers. The dynamic simulation of PFOS concentrations in both sediment and freshwater took into account fluctuations in PFOS emissions, water levels and water discharge. Furthermore, the study delved into exploring the impacts of sluices and artificial rivers on the behavior of PFOS. The simulated concentrations of PFOS in steady state agreed with the measured concentrations in surveys carried out in Nov. 2019, July 2020, Oct. 2020, and June 2021. Every year, approximately 24 kg PFOS was discharged into the Bohai Sea with Chaobai New River being the largest contributor for 44 %. Moreover, the transport of PFOS in the original rivers is likely to be restricted by sluices and replaced by artificial rivers. Monte Carlo analysis showed that model predictions of PFOS concentrations in sediment were subject to greater uncertainty than those in freshwater as the former is impacted by more parameters, such as density of sediment. This study provides a scientific basis for the local government to manage and control PFOS.
Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ríos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Fluorocarburos/análisis , Agua/análisis , Ácidos Alcanesulfónicos/análisisRESUMEN
Plastics gradually degrade in the natural environment from the effect of irradiation, which can change the surface properties of plastics and affect the migration behaviour of pollutants. Up to now, studies on the sorption/desorption behaviour of organic pollutants on aged plastics are still limited. In this study, several types of commercial plastics (polyurethane (PU), polyamide (PA), polyvinyl chloride (PVC), expanded polystyrene (EPS)) were selected to investigate the sorption and release behaviour for four kinds of bisphenols (bisphenol-F, A, B, AP). The results from Raman spectroscopy and scanning electron microscopy (SEM) analysis showed evidence of oxidization and surface cracks of plastics after irradiation. The sorption behaviour for both fresh and aged plastics were dominated by hydrophobicity. In addition, the electrostatic force, H-bonding interaction, and π-π interaction were also the important factors impacting the sorption process. The desorption kinetics behaviour indicates that desorption becomes faster after aging. Hydrophobicity is also an important factor that affects desorption behaviour. This study showed that sorption capacity for most fresh and aged plastics was enhanced by the impact of salinity and dissolved organic matter (DOM). Increased temperature could increase the desorption of bisphenols on both fresh and aged plastics, which illustrated that warm environments would promote more pollutants be released from plastics to water bodies.
Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Plásticos/química , Adsorción , Contaminantes Químicos del Agua/análisisRESUMEN
Perfluoroalkyl acids (PFAAs) are contaminants of global concern, and the inadvertent consumption of PFAA-contaminated crops may pose a threat to public health. Therefore, systematically studying their source tracing, bioaccumulation prediction and risk assessments in crops is an urgent priority. This study investigated the source apportionment and transport of PFAAs and novel fluorinated alternatives (collectively as per- and polyfluoroalkyl substances, PFASs) from factories to agricultural fields in a fluorochemical industrial region of China. Furthermore, bioaccumulation specificities and prediction of these chemicals in different vegetables were explored, followed by a comprehensive risk assessment from agricultural fields to dinner plates which considered precursor degradation. A positive matrix factorization model revealed that approximately 70 % of PFASs in agricultural soils were derived from fluorochemical manufacturing and metal processing. Alarming levels of ∑PFASs ranged 8.28-84.3 ng/g in soils and 163-7176 ng/g in vegetables. PFAS with short carbon chain or carboxylic acid group as well as branched isomers exhibited higher environmental transport potentials and bioaccumulation factors (BAFs) across a range of vegetables. The BAFs of different isomers of perfluorooctanoic acid (PFOA) decreased as the perfluoromethyl group moved further from the acid functional group. Hexafluoropropylene oxide dimer acid (GenX) showed relatively low BAFs, probably related to its ether bond with a high affinity to soil. Vegetables with fewer Casparian strips (e.g., carrot and radish), or more protein, possessed larger BAFs of PFASs. A bioaccumulation equation integrating critical parameters of PFASs, vegetables and soils, was built and corroborated with a good contamination prediction. After a total oxidizable precursors (TOP) assay, incremental perfluoroalkyl carboxylic acids (PFCAs) were massively found (325-5940 ng/g) in edible vegetable parts. Besides, precursor degradation and volatilization loss of PFASs was firstly confirmed during vegetable cooking. A risk assessment based on the TOP assay was developed to assist the protection of vegetable consumers.
Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Bioacumulación , Contaminantes Químicos del Agua/análisis , Verduras/metabolismo , Productos Agrícolas/metabolismo , Fluorocarburos/análisis , China , Suelo/química , Ácidos Carboxílicos/análisis , Medición de Riesgo , Ácidos Alcanesulfónicos/análisisRESUMEN
The sources, distribution, levels and sinks of perfluorooctane sulfonate (PFOS) estimated to be released from areas of high population density, have been explored using the river Rhine as a case study. A comparison between modelled and measured data is presented, along with analysis of the importance of PFOS sorption in riverine systems. PFOS releases into the Rhine were estimated to be 325-690 kg/yr based on per capita emission rates of 27-57 µg day(-1) from a population of 33 million living within a 50 km zone either side of the river. Sorption of PFOS to suspended particles and sediments may alter its fate in the aquatic environment. Therefore available measured and modelled partitioning data was assessed, and K(d) values (sorption coefficient) of 7.5 and 20 were selected. This resulted in sediment-water ratios of 23-76 : 1, which are similar to ratios reported in the literature, and resulted in modelled estimates that <20% of the total PFOS entering the Rhine binds to sediments or suspended particles. The calculated discharge from the Rhine to the North Sea based on measured data was 420-2200 kg/yr; our model predictions are in good agreement with these estimates. Emission trends were accurately predicted, suggesting population density can be effectively used as a surrogate for diffuse PFOS emissions from product use, while predicted concentrations were a factor of 2-4 below measured data showing the importance of other sources. Transfer of PFOS to sediment is estimated to be minimal, and consequently discharges to the North Sea are roughly equal to PFOS releases to river water.
Asunto(s)
Ácidos Alcanesulfónicos/análisis , Monitoreo del Ambiente/métodos , Fluorocarburos/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Ácidos Alcanesulfónicos/química , Fluorocarburos/química , Alemania , Modelos Químicos , Contaminantes Químicos del Agua/químicaRESUMEN
The 7th Military World Games held in Wuhan (WH) in Oct 2019 provided an opportunity to clarify the impact of short-term control measures on air quality. Fine particulate matters (PM2.5) were collected in WH, Huangshi (HS), and Huanggang (HG) during the control (Oct 13-28, 2019) and non-control periods (Oct 29- Nov 5, 2019). The results showed that air quality was good during the control period, with the concentrations of PM2.5 and gaseous pollutants being below the Grade â ¡ of China Ambient Air Quality Standard. Concentrations of PM2.5 and its major chemical components in the control period were significantly lower than those in the non-control period, with reductions ranging from 17% (trace elements) to 46% (elemental carbon). However, higher contributions of secondary components such as SO42-, NO3-, NH4+ and secondary organic carbon (SOC) to PM2.5 were observed during the control period, suggesting the important role of secondary transformation. Potential source contribution function (PSCF) of PM2.5 showed that the main source regions were potentially located in surrounding cities Hubei Province, but regional transport can't be ignored. Six sources were identified by positive matrix factorization (PMF) for both control and non-control period. The contributions of combustion emissions and vehicle emissions were amplified in the control period, while the contribution of construction dust increased significantly when the control measures ended. Emission reductions contributed more to PM2.5 concentration decrease in WH (55%) than that in HS (51%) and HG (49%), which was consistent with the stricter control measures implemented in WH. These results indicated that short-term controls were effective at lowering PM2.5 concentration. However, the elevated contributions of secondary aerosols and the influence of regional transport on the study areas also need to be paid attention for air quality improvement in the future.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Personal Militar , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Carbono/análisis , China , Monitoreo del Ambiente/métodos , Humanos , Material Particulado/análisis , Estaciones del Año , Emisiones de Vehículos/análisisRESUMEN
Molecular diagnostic ratios (MDRs)-the ratios of defined pairs of individual compounds-have been widely used as markers of different source categories of polycyclic aromatic hydrocarbons (PAHs). However, it is well-known that variations in combustion conditions and environmental degradation processes can cause substantial variability in the emission and degradation of individual compounds, potentially undermining the application of MDRs as reliable source apportionment tools. The United Kingdom produces a national inventory of atmospheric emissions of PAHs, and has an ambient air monitoring program at a range of rural, semirural, urban, and industrial sites. The inventory and the monitoring data are available over the past 20 years (1990-2010), a time frame that has seen known changes in combustion type and source. Here we assess 5 MDRs that have been used in the literature as source markers. We examine the spatial and temporal variability in the ratios and consider whether they are responsive to known differences in source strength and types between sites (on rural-urban gradients) and to underlying changes in national emissions since 1990. We conclude that the use of these 5 MDRs produces contradictory results and that they do not respond to known differences (in time and space) in atmospheric emission sources. For example, at a site near a motorway and far from other evident emission sources, the use of MDRs suggests "non-traffic" emissions. The ANT/(ANT + PHE) ratio is strongly seasonal at some sites; it is the most susceptible MDR to atmospheric processes, so these results illustrate how weathering in the environment will undermine the effectiveness of MDRs as markers of source(s). We conclude that PAH MDRs can exhibit spatial and temporal differences, but they are not valid markers of known differences in source categories and type. Atmospheric sources of PAHs in the UK are probably not dominated by any single clear and strong source type, so the mixture of PAHs in air is quickly "blended" away from the influence of the few major point sources which exist and further weathered in the environment by atmospheric reactions and selective loss processes.
Asunto(s)
Contaminación del Aire/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente , Estructura Molecular , Reino UnidoRESUMEN
This study summarizes the key findings of a long-term (1991-2008) monitoring program to measure polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in urban and rural ambient air in the UK. Air concentrations are reported for 6 sites-3 urban (London, Manchester, and Middlesbrough) and 3 rural/semirural (Hazelrigg, High Muffles, and Stoke Ferry). Nearly 310 samples have been analyzed, each for a 3-month period. Annually averaged urban concentrations in the early 1990s were typically a few 100s fg (TEQ) m(-3) and <50 fg m(-3) in the mid-2000s. Applying first-order kinetics to the whole urban time series gave T1/2 (atmospheric half-lives) in London and Manchester of 3.2-5.9 and 4.1-5.9 years, respectively. Estimated national annual atmospheric emissions trends broadly correlated with the trends in urban ambient concentrations, suggesting that the inventory has captured the broad mixture of sources. However, rural air concentrations (in the low 10s fg m(-3)) show no discernible change since 1996, while recent urban concentrations are close to those in rural areas. Other UK trend data infer the declines in the 1990s followed previous declines in the 1980s from peak levels in the 1950-1970s, all before routine monitoring began. Winter concentrations are generally a factor of 2-3 higher than summer concentrations, implicating diffuse combustion sources (e.g., domestic space heating). These observations taken together suggest that most major readily controllable primary/point sources were reduced by the early/mid-1990s in the UK and that current ambient levels in both rural and urban areas may remain at broadly similar levels in the foreseeable future, unless there are major changes in energy requirements and generation options, fuel usage, and policy drivers.
Asunto(s)
Contaminantes Atmosféricos/análisis , Atmósfera/química , Benzofuranos/análisis , Monitoreo del Ambiente , Dibenzodioxinas Policloradas/análogos & derivados , Contaminación del Aire/estadística & datos numéricos , Dibenzofuranos Policlorados , Dibenzodioxinas Policloradas/análisis , Reino UnidoRESUMEN
Long-term air monitoring data sets are needed for persistent organic pollutants (POPs), to assess the effectiveness of source abatement measures and the factors controlling ambient levels. The Toxic Organic Micro-Pollutants (TOMPS) program in the United Kingdom started in 1991, generating a data set for polychlorinated biphenyls (PCBs). The history and volumes of production, usage, and subsequent restrictions on PCBs in the UK are well-characterized relative to many countries, providing a valuable case study on the effectiveness of controls and the factors influencing ambient levels and trends of these "model POPs". PCB air concentrations (congeners PCB 28, 52, 90/101, 118, 138, 153, and 180) from six rural and urban monitoring sites are presented. Most show a statistically significant decrease in PCBs levels over time, consistent with estimates of emissions, helping to validate emissions inventories. Times for a 50% decline in concentrations (sometimes called clearance rates) averaged 4.7 ± 1.6 years for all congeners at all sites. The trends at different sites and for different congeners were not statistically different from each other. Concentration differences between sites are correlated with local population density (i.e., the degree of urbanization), which supports approaches to modeling of primary emissions on the national and regional scale. The data set indicates that ambient levels and underlying trends of PCBs continue to reflect the controlling influence of diffuse primary sources from the ongoing stock of PCBs in urban environments. Production and use restrictions came into force in the UK over 40 years ago; trends since monitoring began in the early 1990s should be seen as part of a continuing decline in ambient levels since that time.