Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Phycol ; 50(4): 753-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26988459

RESUMEN

We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants α-tocopherol (vitamin E) and ß-carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe-ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K-0591, both good producers of this compound, α-tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv /Fm ). On the other hand, ß-carotene accumulation was positively affected by higher Fv /Fm in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K-0591 and R. salina SCCAP K-0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α-tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, ß-carotene performs immediate photo-oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short-term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α-tocopherol and ß-carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo-synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large-scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.

2.
Microb Ecol ; 65(3): 566-77, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23263236

RESUMEN

Thiamine (vitamin B1) is produced by many plants, algae and bacteria, but by higher trophic levels, it must be acquired through the diet. We experimentally investigated how the thiamine content of six phytoplankton species belonging to five different phyla is affected by abiotic stress caused by changes in temperature, salinity and photon flux density. Correlations between growth rate and thiamine content per cell were negative for the five eukaryotic species, but not for the cyanobacterium Nodularia spumigena. We demonstrate a high variability in thiamine content among phytoplankton species, with the highest content in N. spumigena. Salinity was the factor with the strongest effect, followed by temperature and photon flux density, although the responses varied between the investigated phytoplankton species. Our results suggest that regime shifts in phytoplankton community composition through large-scale environmental changes has the potential to alter the thiamine availability for higher trophic levels. A decreased access to this essential vitamin may have serious consequences for aquatic food webs.


Asunto(s)
Chlorophyta/metabolismo , Cianobacterias/metabolismo , Diatomeas/metabolismo , Dinoflagelados/metabolismo , Fitoplancton/metabolismo , Tiamina/metabolismo , Chlorophyta/química , Chlorophyta/crecimiento & desarrollo , Cianobacterias/química , Cianobacterias/crecimiento & desarrollo , Diatomeas/química , Diatomeas/crecimiento & desarrollo , Dinoflagelados/química , Dinoflagelados/crecimiento & desarrollo , Ecosistema , Cinética , Fitoplancton/química , Fitoplancton/crecimiento & desarrollo
3.
ISME J ; 13(2): 316-333, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30228379

RESUMEN

Larger volumes of sea ice have been thawing in the Central Arctic Ocean (CAO) during the last decades than during the past 800,000 years. Brackish brine (fed by meltwater inside the ice) is an expanding sympagic habitat in summer all over the CAO. We report for the first time the structure of bacterial communities in this brine. They are composed of psychrophilic extremophiles, many of them related to phylotypes known from Arctic and Antarctic regions. Community structure displayed strong habitat segregation between brackish ice brine (IB; salinity 2.4-9.6) and immediate sub-ice seawater (SW; salinity 33.3-34.9), expressed at all taxonomic levels (class to genus), by dominant phylotypes as well as by the rare biosphere, and with specialists dominating IB and generalists SW. The dominant phylotypes in IB were related to Candidatus Aquiluna and Flavobacterium, those in SW to Balneatrix and ZD0405, and those shared between the habitats to Halomonas, Polaribacter and Shewanella. A meta-analysis for the oligotrophic CAO showed a pattern with Flavobacteriia dominating in melt ponds, Flavobacteriia and Gammaproteobacteria in solid ice cores, Flavobacteriia, Gamma- and Betaproteobacteria, and Actinobacteria in brine, and Alphaproteobacteria in SW. Based on our results, we expect that the roles of Actinobacteria and Betaproteobacteria in the CAO will increase with global warming owing to the increased production of meltwater in summer. IB contained three times more phylotypes than SW and may act as an insurance reservoir for bacterial diversity that can act as a recruitment base when environmental conditions change.


Asunto(s)
Bacterias/aislamiento & purificación , Calentamiento Global , Cubierta de Hielo/microbiología , Actinobacteria/aislamiento & purificación , Alphaproteobacteria/aislamiento & purificación , Regiones Antárticas , Regiones Árticas , Bacterias/clasificación , Ecosistema , Flavobacteriaceae/aislamiento & purificación , Gammaproteobacteria/aislamiento & purificación , Salinidad , Estaciones del Año , Agua de Mar/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA