Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 194(6): 443, 2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35596858

RESUMEN

To assess the temporary effects of the increased copper ion inflow on estuarine microphytobenthic communities, ecotoxicological tests were conducted using natural microphytobenthic assemblages obtained from an artificial substratum exposed to the waters of the southern Baltic Sea (Gulf of Gdansk). The applied copper ion concentrations reflected permitted copper values established for waters of a good ecological status (2·10-5 g Cu·dm-3), and the maximum copper concentrations which, according to the current environmental regulations, are allowed to be discharged into the environment (2·10-3 g Cu·dm-3).In the studied communities, diverse responses of single species to CuCl2 exposure were recorded, including both growth inhibition and stimulatory effects as well. Despite the shift in the community composition and structure, total cell number remained at a similar level. The results of our investigations suggest that microphytobenthic assemblages are resistant to CuCl2 which is facilitated by the shift in the community composition resulting from the increasing cell number of copper tolerant species.


Asunto(s)
Cobre , Monitoreo del Ambiente , Cloruros , Cobre/toxicidad
2.
Artículo en Inglés | MEDLINE | ID: mdl-33498564

RESUMEN

Glyphosate is a very effective herbicide and the main active ingredient in Roundup®-the most extensively used herbicide in the world. Since glyphosate is highly water soluble it reaches water bodies easily in surface water runoff. This prompted us to undertake an experiment to evaluate the effects of glyphosate in Roundup® on natural communities of marine microphytobenthos. Microphytobenthos communities were obtained from the environment, and after transporting them to the laboratory and acclimatizing them, they were tested under controlled conditions. Changes in microphytobenthos composition and structure and the deteriorating condition of the cells of community-forming organisms (assessed by analyzing changes in chloroplast shape) were used to assess the impact of Roundup® on endpoints. The tests indicated that microphytobenthic communities were relatively resistant to herbicide. The species richness of the communities probably enabled them to rebuild effectively. Sensitive species were replaced by those more tolerant of glyphosate. Only at the highest glyphosate concentration (8.5 g·dm-3) tested was a strong negative effect noted that limited community abundance and eliminated some of the organisms. The dominant diatoms in the communities were replaced by intensively developing cyanobacteria, which ultimately comprised nearly 60% of all the cells observed in the communities.


Asunto(s)
Herbicidas , Microalgas , Contaminantes Químicos del Agua , Glicina/análogos & derivados , Glicina/toxicidad , Herbicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Glifosato
3.
Biologia (Bratisl) ; 73(11): 1067-1072, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30443050

RESUMEN

Periphyton plays a vital ecological role in shallow, well-lit ecosystems which are vulnerable to rapidly changing environmental conditions, including raising temperature due to global warming. Nevertheless, little is known on the effect of increased temperatures on the taxonomic structure and functioning of periphytic communities. In this study, the influence of short-term temperature increase on the species composition and photosynthetic activity of the Baltic periphytic communities was investigated. The collected communities were exposed to increased temperature of 23 °C (ca. 4 °C above the summer average) for 72 h. After this time, species composition of the communities was studied under light microscope and their photosynthetic performance was evaluated using PAM fluorometry. Results showed that the biomass of cyanobacteria slightly increased. There were significant changes in the abundance of diatom species, among which Fragilaria fasciculata and Navicula ramosissima, were negatively affected by the elevated temperature and their cell number significantly decreased, whereas, Diatoma moniliformis and N. perminuta were stimulated by the increased temperature. Additionally, a shift towards higher abundance of smaller taxa was also observed. The higher quantum yield of photosystem II (PSII) (higher ΦPSII) accompanied by the lower value of non-photochemical quenching (NPQ) observed in communities kept at 23 °C showed more efficient photosynthesis. This was further confirmed by the changes in rapid light curves (higher photosynthetic capacity, rETRmax, and photoacclimation index, Ek). The obtained data constitute evidence that short periods of increased temperature significantly affect the structure and functioning of the Baltic periphyton.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA