Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rep Prog Phys ; 85(1)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35138267

RESUMEN

Advanced manufacturing technologies, led by additive manufacturing, have undergone significant growth in recent years. These technologies enable engineers to design parts with reduced weight while maintaining structural and functional integrity. In particular, metal additive manufacturing parts are increasingly used in application areas such as aerospace, where a failure of a mission-critical part can have dire safety consequences. Therefore, the quality of these components is extremely important. A critical aspect of quality control is dimensional evaluation, where measurements provide quantitative results that are traceable to the standard unit of length, the metre. Dimensional measurements allow designers, manufacturers and users to check product conformity against engineering drawings and enable the same quality standard to be used across the supply chain nationally and internationally. However, there is a lack of development of measurement techniques that provide non-destructive dimensional measurements beyond common non-destructive evaluation focused on defect detection. X-ray computed tomography (XCT) technology has great potential to be used as a non-destructive dimensional evaluation technology. However, technology development is behind the demand and growth for advanced manufactured parts. Both the size and the value of advanced manufactured parts have grown significantly in recent years, leading to new requirements of dimensional measurement technologies. This paper is a cross-disciplinary review of state-of-the-art non-destructive dimensional measuring techniques relevant to advanced manufacturing of metallic parts at larger length scales, especially the use of high energy XCT with source energy of greater than 400 kV to address the need in measuring large advanced manufactured parts. Technologies considered as potential high energy x-ray generators include both conventional x-ray tubes, linear accelerators, and alternative technologies such as inverse Compton scattering sources, synchrotron sources and laser-driven plasma sources. Their technology advances and challenges are elaborated on. The paper also outlines the development of XCT for dimensional metrology and future needs.

2.
Proc Natl Acad Sci U S A ; 115(25): 6335-6340, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29871946

RESUMEN

In the field of X-ray microcomputed tomography (µCT) there is a growing need to reduce acquisition times at high spatial resolution (approximate micrometers) to facilitate in vivo and high-throughput operations. The state of the art represented by synchrotron light sources is not practical for certain applications, and therefore the development of high-brightness laboratory-scale sources is crucial. We present here imaging of a fixed embryonic mouse sample using a compact laser-plasma-based X-ray light source and compare the results to images obtained using a commercial X-ray µCT scanner. The radiation is generated by the betatron motion of electrons inside a dilute and transient plasma, which circumvents the flux limitations imposed by the solid or liquid anodes used in conventional electron-impact X-ray tubes. This X-ray source is pulsed (duration <30 fs), bright (>1010 photons per pulse), small (diameter <1 µm), and has a critical energy >15 keV. Stable X-ray performance enabled tomographic imaging of equivalent quality to that of the µCT scanner, an important confirmation of the suitability of the laser-driven source for applications. The X-ray flux achievable with this approach scales with the laser repetition rate without compromising the source size, which will allow the recording of high-resolution µCT scans in minutes.


Asunto(s)
Radiografía/métodos , Microtomografía por Rayos X/métodos , Animales , Diseño de Equipo , Rayos Láser , Luz , Ratones/embriología , Aceleradores de Partículas , Fotones , Dispersión de Radiación , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA