Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Chemistry ; 29(52): e202300030, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37378970

RESUMEN

Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.

2.
Bioorg Med Chem ; 27(7): 1350-1361, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30808607

RESUMEN

As a continuation of our project aimed at searching for new chemotherapeutic agents against American trypanosomiasis (Chagas disease), new selenocyanate derivatives were designed, synthesized and biologically evaluated against the clinically more relevant dividing form of Trypanosoma cruzi, the etiologic agent of this illness. In addition, in order to establish the role of each part of the selenocyanate moiety, different derivatives, in which the selenium atom or the cyano group were absent, were conceived, synthesized and biologically evaluated. In addition, in order to study the optimal position of the terminal phenoxy group, new regioisomers of WC-9 were synthesized and evaluated against T. cruzi. Finally, the resolution of a racemic mixture of a very potent conformationally rigid analogue of WC-9 was accomplished and further tested as growth inhibitors of T. cruzi proliferation. The results provide further insight into the role of the selenocyanate group in its antiparasitic activity.


Asunto(s)
Antiparasitarios/farmacología , Compuestos de Organoselenio/farmacología , Éteres Fenílicos/farmacología , Tiocianatos/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiparasitarios/síntesis química , Antiparasitarios/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Compuestos de Organoselenio/síntesis química , Compuestos de Organoselenio/química , Pruebas de Sensibilidad Parasitaria , Éteres Fenílicos/química , Relación Estructura-Actividad , Tiocianatos/química , Células Vero
3.
Bioorg Med Chem ; 27(16): 3663-3673, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31296439

RESUMEN

As an extension of our project aimed at the search for new chemotherapeutic agents against Chagas disease and toxoplasmosis, several 1,1-bisphosphonates were designed, synthesized and biologically evaluated against Trypanosoma cruzi and Toxoplasma gondii, the etiologic agents of these diseases, respectively. In particular, and based on the antiparasitic activity exhibited by 2-alkylaminoethyl-1,1-bisphosphonates targeting farnesyl diphosphate synthase, a series of linear 2-alkylaminomethyl-1,1-bisphosphonic acids (compounds 21-33), that is, the position of the amino group was one carbon closer to the gem-phosphonate moiety, were evaluated as growth inhibitors against the clinically more relevant dividing form (amastigotes) of T. cruzi. Although all of these compounds resulted to be devoid of antiparasitic activity, these results were valuable for a rigorous SAR study. In addition, unexpectedly, the synthetic designed 2-cycloalkylaminoethyl-1,1-bisphosphonic acids 47-49 were free of antiparasitic activity. Moreover, long chain sulfur-containing 1,1-bisphosphonic acids, such as compounds 54-56, 59, turned out to be nanomolar growth inhibitors of tachyzoites of T. gondii. As many bisphosphonate-containing molecules are FDA-approved drugs for the treatment of bone resorption disorders, their potential nontoxicity makes them good candidates to control American trypanosomiasis and toxoplasmosis.


Asunto(s)
Antiprotozoarios/uso terapéutico , Difosfonatos/síntesis química , Difosfonatos/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos , Antiprotozoarios/farmacología , Difosfonatos/farmacología , Relación Estructura-Actividad
4.
Artículo en Inglés | MEDLINE | ID: mdl-28559264

RESUMEN

Bisphosphonates are widely used for the treatment of bone disorders. These drugs also inhibit the growth of a variety of protozoan parasites, such as Toxoplasma gondii, the etiologic agent of toxoplasmosis. The target of the most potent bisphosphonates is the isoprenoid biosynthesis pathway enzyme farnesyl diphosphate synthase (FPPS). Based on our previous work on the inhibitory effect of sulfur-containing linear bisphosphonates against T. gondii, we investigated the potential synergistic interaction between one of these derivatives, 1-[(n-heptylthio)ethyl]-1,1-bisphosphonate (C7S), and statins, which are potent inhibitors of the host 3-hydroxy-3-methyl glutaryl-coenzyme A reductase (3-HMG-CoA reductase). C7S showed high activity against the T. gondii bifunctional farnesyl diphosphate (FPP)/geranylgeranyl diphosphate (GGPP) synthase (TgFPPS), which catalyzes the formation of FPP and GGPP (50% inhibitory concentration [IC50] = 31 ± 0.01 nM [mean ± standard deviation]), and modest effect against the human FPPS (IC50 = 1.3 ± 0.5 µM). We tested combinations of C7S with statins against the in vitro replication of T. gondii We also treated mice infected with a lethal dose of T. gondii with similar combinations. We found strong synergistic activities when using low doses of C7S, which were stronger in vivo than when tested in vitro We also investigated the synergism of several commercially available bisphosphonates with statins both in vitro and in vivo Our results provide evidence that it is possible to develop drug combinations that act synergistically by inhibiting host and parasite enzymes in vitro and in vivo.


Asunto(s)
Antiprotozoarios/uso terapéutico , Atorvastatina/uso terapéutico , Difosfonatos/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Imidazoles/uso terapéutico , Toxoplasma/efectos de los fármacos , Toxoplasmosis/tratamiento farmacológico , Acilcoenzima A/metabolismo , Animales , Línea Celular , Difosfonatos/farmacología , Geranilgeranil-Difosfato Geranilgeraniltransferasa/antagonistas & inhibidores , Geraniltranstransferasa/antagonistas & inhibidores , Geraniltranstransferasa/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Ratones , Fosfatos de Poliisoprenilo/biosíntesis , Sesquiterpenos , Toxoplasma/crecimiento & desarrollo , Ácido Zoledrónico
5.
Artículo en Inglés | MEDLINE | ID: mdl-27895021

RESUMEN

We tested a series of sulfur-containing linear bisphosphonates against Toxoplasma gondii, the etiologic agent of toxoplasmosis. The most potent compound (compound 22; 1-[(n-decylsulfonyl)ethyl]-1,1-bisphosphonic acid) is a sulfone-containing compound, which had a 50% effective concentration (EC50) of 0.11 ± 0.02 µM against intracellular tachyzoites. The compound showed low toxicity when tested in tissue culture with a selectivity index of >2,000. Compound 22 also showed high activity in vivo in a toxoplasmosis mouse model. The compound inhibited the Toxoplasma farnesyl diphosphate synthase (TgFPPS), but the concentration needed to inhibit 50% of the enzymatic activity (IC50) was higher than the concentration that inhibited 50% of growth. We tested compound 22 against two other apicomplexan parasites, Plasmodium falciparum (EC50 of 0.6 ± 0.01 µM), the agent of malaria, and Cryptosporidium parvum (EC50 of ∼65 µM), the agent of cryptosporidiosis. Our results suggest that compound 22 is an excellent novel compound that could lead to the development of potent agents against apicomplexan parasites.


Asunto(s)
Antiprotozoarios/farmacología , Cryptosporidium parvum/efectos de los fármacos , Difosfonatos/farmacología , Plasmodium falciparum/efectos de los fármacos , Toxoplasma/efectos de los fármacos , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Técnicas de Química Sintética , Cryptosporidium parvum/crecimiento & desarrollo , Difosfonatos/síntesis química , Difosfonatos/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Humanos , Ratones Endogámicos , Plasmodium falciparum/crecimiento & desarrollo , Azufre/química , Azufre/farmacología , Toxoplasma/enzimología , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/tratamiento farmacológico
6.
Bioorg Med Chem ; 25(24): 6435-6449, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29107437

RESUMEN

The obligate intracellular parasite, Trypanosoma cruzi is the etiologic agent of Chagas disease or American trypanosomiasis, which is the most prevalent parasitic disease in the Americas. The present chemotherapy to control this illness is still deficient particularly in the chronic stage of the disease. The ergosterol biosynthesis pathway has received much attention as a molecular target for the development of new drugs for Chagas disease. Especially, inhibitors of the enzymatic activity of squalene synthase were shown to be effective compounds on T. cruzi proliferation in in vitro assays. In the present study we designed, synthesized and evaluated the effect of a number of isosteric analogues of WC-9 (4-phenoxyphenoxyethyl thiocyanate), a known squalene synthase inhibitor, on T. cruzi growth in tissue culture cells. The selenium-containing derivatives turned out to be extremely potent inhibitors of T. cruzi growth. Certainly, 3-phenoxyphenoxyethyl, 4-phenoxyphenoxyethyl, 4-(3-fluorophenoxy)phenoxyethyl, 3-(3-fluorophenoxy)phenoxyethyl selenocyanates and (±)-5-phenoxy-2-(selenocyanatomethyl)-2,3-dihydrobenzofuran arose as relevant members of this family of compounds, which exhibited effective ED50 values of 0.084 µM, 0.11 µM, 0.083, µM, 0.085, and 0.075 µM, respectively. The results indicate that compounds bearing the selenocyanate moiety are at least two orders of magnitude more potent than the corresponding skeleton counterpart bearing the thiocyanate group. Surprisingly, these compounds exhibited excellent selectively index values ranging from 900 to 1800 making these molecules promising candidates as antiparasitic agents.


Asunto(s)
Éteres Fenílicos/farmacología , Selenio/farmacología , Tiocianatos/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Éteres Fenílicos/síntesis química , Éteres Fenílicos/química , Selenio/química , Relación Estructura-Actividad , Tiocianatos/síntesis química , Tiocianatos/química , Tripanocidas/síntesis química , Tripanocidas/química , Trypanosoma cruzi/citología , Trypanosoma cruzi/crecimiento & desarrollo , Células Vero
7.
Molecules ; 22(1)2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-28054995

RESUMEN

Based on crystallographic data of the complexes 2-alkyl(amino)ethyl-1,1-bisphosphonates-Trypanosoma cruzi farnesyl diphosphate synthase, some linear 1,1-bisphosphonic acids and other closely related derivatives were designed, synthesized and biologically evaluated against T. cruzi, the responsible agent of Chagas disease and against Toxoplasma gondii, the etiologic agent of toxoplasmosis and also towards the target enzymes farnesyl pyrophosphate synthase of T. cruzi (TcFPPS) and T gondii (TgFPPS), respectively. The isoprenoid-containing 1,1-bisphosphonates exhibited modest antiparasitic activity, whereas the linear α-fluoro-2-alkyl(amino)ethyl-1,1-bisphosphonates were unexpectedly devoid of antiparasitic activity. In spite of not presenting efficient antiparasitic activity, these data turned out to be very important to establish a structural activity relationship.


Asunto(s)
Antiprotozoarios/síntesis química , Difosfonatos/síntesis química , Inhibidores Enzimáticos/síntesis química , Geraniltranstransferasa/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Toxoplasma/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiprotozoarios/farmacología , Chlorocebus aethiops , Difosfonatos/farmacología , Pruebas de Enzimas , Inhibidores Enzimáticos/farmacología , Expresión Génica , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Halogenación , Humanos , Pruebas de Sensibilidad Parasitaria , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad , Toxoplasma/enzimología , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/genética , Trypanosoma cruzi/crecimiento & desarrollo , Células Vero
8.
Bioorg Med Chem ; 22(1): 398-405, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24300918

RESUMEN

As part of our project pointed at the search of new antiparasitic agents against American trypanosomiasis (Chagas disease) and toxoplasmosis a series of 2-alkylaminoethyl-1-hydroxy-1,1-bisphosphonic acids has been designed, synthesized and biologically evaluated against the etiologic agents of these parasitic diseases, Trypanosoma cruzi and Toxoplasma gondii, respectively, and also towards their target enzymes, T. cruzi and T. gondii farnesyl pyrophosphate synthase (FPPS), respectively. Surprisingly, while most pharmacologically active bisphosphonates have a hydroxyl group at the C-1 position, the additional presence of an amino group at C-3 resulted in decreased activity towards either T. cruzi cells or TcFPPS. Density functional theory calculations justify this unexpected behavior. Although these compounds were devoid of activity against T. cruzi cells and TcFPPS, they were efficient growth inhibitors of tachyzoites of T. gondii. This activity was associated with a potent inhibition of the enzymatic activity of TgFPPS. Compound 28 arises as a main example of this family of compounds exhibiting an ED50 value of 4.7 µM against tachyzoites of T. gondii and an IC50 of 0.051 µM against TgFPPS.


Asunto(s)
Antiparasitarios/farmacología , Difosfonatos/farmacología , Geraniltranstransferasa/química , Toxoplasma/enzimología , Trypanosoma cruzi/enzimología , Diseño de Fármacos , Relación Estructura-Actividad , Toxoplasma/metabolismo , Trypanosoma cruzi/metabolismo
9.
Eur J Med Chem ; 262: 115885, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37871407

RESUMEN

The opportunistic apicomplexan parasite Toxoplasma gondii is the etiologic agent for toxoplasmosis, which can infect a widespread range of hosts, particularly humans and warm-blooded animals. The present chemotherapy to treat or prevent toxoplasmosis is deficient and is based on diverse drugs such as atovaquone, trimethoprim, spiramycine, which are effective in acute toxoplasmosis. Therefore, a safe chemotherapy is required for toxoplasmosis considering that its responsible agent, T. gondii, provokes severe illness and death in pregnant women and immunodeficient patients. A certain disadvantage of the available treatments is the lack of effectiveness against the tissue cyst of the parasite. A safe chemotherapy to combat toxoplasmosis should be based on the metabolic differences between the parasite and the mammalian host. This article covers different relevant molecular targets to combat this disease including the isoprenoid pathway (farnesyl diphosphate synthase, squalene synthase), dihydrofolate reductase, calcium-dependent protein kinases, histone deacetylase, mitochondrial electron transport chain, etc.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Humanos , Femenino , Embarazo , Toxoplasmosis/tratamiento farmacológico , Atovacuona/metabolismo , Atovacuona/farmacología , Atovacuona/uso terapéutico , Trimetoprim/farmacología , Mamíferos
10.
Antimicrob Agents Chemother ; 56(8): 4483-6, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22585217

RESUMEN

As part of our efforts aimed at searching for new antiparasitic agents, the effect of representative 2-alkylaminoethyl-1,1-bisphosphonic acids on Trypanosoma cruzi squalene synthase (TcSQS) was investigated. These compounds had proven to be potent inhibitors of T. cruzi. This cellular activity had been associated with an inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase. 2-Alkylaminoethyl-1,1-bisphosphonic acids appear to have a dual action, since they also inhibit TcSQS at the nanomolar range.


Asunto(s)
Antiparasitarios/farmacología , Difosfonatos/farmacología , Farnesil Difosfato Farnesil Transferasa/antagonistas & inhibidores , Geraniltranstransferasa/antagonistas & inhibidores , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología , Antiparasitarios/química , Antiparasitarios/metabolismo , Enfermedad de Chagas/tratamiento farmacológico , Difosfonatos/química , Difosfonatos/metabolismo , Farnesil Difosfato Farnesil Transferasa/metabolismo , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tripanocidas/química , Tripanocidas/metabolismo , Trypanosoma cruzi/metabolismo
11.
Org Biomol Chem ; 10(7): 1424-33, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22215028

RESUMEN

α-Fluorinated-1,1-bisphosphonic acids derived from fatty acids were designed, synthesized and biologically evaluated against Trypanosoma cruzi, the etiologic agent of Chagas disease, and against Toxoplasma gondii, the agent responsible for toxoplasmosis, and also towards the target parasitic enzymes farnesyl pyrophosphate synthase of T. cruzi (TcFPPS) and T. gondii (TgFPPS). Interestingly, 1-fluorononylidene-1,1-bisphosphonic acid (compound 43) proved to be an extremely potent inhibitor of the enzymatic activity of TgFPPS at the low nanomolar range, exhibiting an IC(50) of 30 nM. This compound was two-fold more potent than risedronate (IC(50) = 74 nM) that was taken as a positive control. This enzymatic activity was associated with a strong cell growth inhibition against tachyzoites of T. gondii, with an IC(50) value of 2.7 µM.


Asunto(s)
Antiprotozoarios/farmacología , Difosfonatos/farmacología , Inhibidores Enzimáticos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Toxoplasma/enzimología , Antiprotozoarios/química , Difosfonatos/química , Inhibidores Enzimáticos/química , Geraniltranstransferasa/metabolismo , Toxoplasma/metabolismo
12.
Bioorg Med Chem ; 19(7): 2211-7, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21419634

RESUMEN

The effect of long-chain 2-alkylaminoethyl-1,1-bisphosphonates against proliferation of the clinically more relevant form of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas' disease), and against tachyzoites of Toxoplasma gondii was investigated. Particularly, compound 26 proved to be an extremely potent inhibitor against the intracellular form of T. cruzi, exhibiting IC(50) values at the nanomolar range. This cellular activity was associated with a strong inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase (TcFPPS), which constitutes a valid target for Chagas' disease chemotherapy. Compound 26 was an effective agent against T. cruzi (amastigotes) exhibiting an IC(50) value of 0.67 µM, while this compound showed an IC(50) value of 0.81 µM against the target enzyme TcFPPS. This drug was less effective against the enzymatic activity of T. cruzi solanesyl diphosphate synthase TcSPPS showing an IC(50) value of 3.2 µM. Interestingly, compound 26 was also very effective against T. gondii (tachyzoites) exhibiting IC(50) values of 6.23 µM. This cellular activity was also related to the inhibition of the enzymatic activity towards the target enzyme TgFPPS (IC(50)=0.093 µM) As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control different tropical diseases.


Asunto(s)
Antiprotozoarios/química , Difosfonatos/química , Difosfonatos/farmacología , Inhibidores Enzimáticos/química , Geraniltranstransferasa/antagonistas & inhibidores , Toxoplasma/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/farmacología , Chlorocebus aethiops , Difosfonatos/síntesis química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Geraniltranstransferasa/metabolismo , Terapia Molecular Dirigida , Relación Estructura-Actividad , Toxoplasma/enzimología , Trypanosoma cruzi/enzimología , Células Vero
13.
Phys Chem Chem Phys ; 13(40): 18088-98, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21922088

RESUMEN

The subunit II of the caa(3) oxygen reductase from Rhodothermus marinus contains, in addition to the Cu(A) center, a c-type heme group in the cytochrome c domain (Cyt-D) that is the putative primary electron acceptor of the enzyme. In this work we have combined surface-enhanced resonance Raman (SERR) spectroelectrochemistry, molecular dynamics (MD) simulations and electron pathway calculations to assess the most likely interaction domains and electron entry/exit points of the truncated Cyt-D of subunit II in the reactions with its electron donor, HiPIP and electron acceptor, Cu(A). The results indicate that the transient interaction between Cyt-D and HiPIP relies upon a delicate balance of hydrophobic and polar contacts for establishing an optimized electron transfer pathway that involves the exposed edge of the heme group and guaranties efficient inter-protein electron transfer on the nanosecond time scale. The reorganization energy of ca. 0.7 eV was determined by time-resolved SERR spectroelectrochemistry. The intramolecular electron transfer pathway in integral subunit II from Cyt-D to the Cu(A) redox center most likely involves the iron ligand histidine 20 as an electron exit point in Cyt-D.


Asunto(s)
Grupo Citocromo c/metabolismo , Citocromos a3/metabolismo , Citocromos a/metabolismo , Rhodothermus/enzimología , Grupo Citocromo c/química , Citocromos a/química , Citocromos a3/química , Transporte de Electrón , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Espectrometría Raman
14.
Bioorg Med Chem ; 16(6): 3283-90, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18096393

RESUMEN

The effect of a series of 2-alkylaminoethyl-1,1-bisphosphonic acids against proliferation of the clinically more relevant form of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas' disease), and against tachyzoites of Toxoplasma gondii has been studied. Most of these drugs exhibited an extremely potent inhibitory action against the intracellular form of T. cruzi, exhibiting IC(50) values at the low micromolar level. This cellular activity was associated with a strong inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase (TcFPPS), which constitutes a valid target for Chagas' disease chemotherapy. Compound 17 was an effective agent against amastigotes exhibiting an IC(50) value of 0.84 microM, while this compound showed an IC(50) value of 0.49 microM against the target enzyme TcFPPS. Interestingly, compound 19 was very effective against both T. cruzi and T. gondii exhibiting IC(50) values of 4.1 microM and 2.6 microM, respectively. In this case, 19 inhibited at least two different enzymes of T. cruzi (TcFPPS and solanesyl diphosphate synthase (TcSPPS); 1.01 microM and 0.25 microM, respectively), while it inhibited TgFPPS in T. gondii. In general, this family of drugs was less effective against the activity of T. cruzi SPPS and against T. gondii growth in vitro. As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control tropical diseases.


Asunto(s)
Antiprotozoarios/química , Difosfonatos/química , Difosfonatos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Toxoplasma/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiprotozoarios/farmacología , Difosfonatos/síntesis química , Inhibidores Enzimáticos , Concentración 50 Inhibidora , Relación Estructura-Actividad
15.
Expert Opin Ther Pat ; 26(9): 993-1015, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27376456

RESUMEN

INTRODUCTION: Trypanosoma cruzi is the etiologic agent of American trypanosomiasis (Chagas disease), which is one of the important parasitic diseases worldwide. The number of infected people with T. cruzi diminished from 18 million in 1991 to 6 million in 2010, but it is still the most prevalent parasitic disease in the Americas. The existing chemotherapy is still deficient and based on two drugs: nifurtimox and benznidazole, which are not FDA-approved in the United States. AREAS COVERED: This review covers the current and future directions of Chagas disease chemotherapy based on drugs that interfere with relevant metabolic pathways. This article also illustrates the challenges of diagnosis, which in recent infections, is only detected when the parasitemia is high (direct detection); whereas, in the chronic phase is reached after multiple serological tests. EXPERT OPINION: The current chemotherapy is associated with long term treatments and severe side effects. Nifurtimox and benznidazole are able to cure at least 50% of recent infections. Nevertheless, they suffer from major drawbacks: selective drug sensitivity on different T. cruzi strains and serious side effects. The aim of this review is focused on presenting an up-to-date status of the chemotherapy and diagnosis.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Diseño de Fármacos , Tripanocidas/farmacología , Animales , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/parasitología , Resistencia a Medicamentos , Humanos , Parasitemia/diagnóstico , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Patentes como Asunto , Tripanocidas/efectos adversos , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/aislamiento & purificación
16.
Expert Opin Drug Discov ; 11(3): 307-20, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26781029

RESUMEN

INTRODUCTION: Farnesyl pyrophosphate synthase (FPPS) catalyzes the condensation of isopentenyl diphosphate with dimethylallyl diphosphate to give rise to one molecule of geranyl diphosphate, which on a further reaction with another molecule of isopentenyl diphosphate forms the 15-carbon isoprenoid farnesyl diphosphate. This molecule is the obliged precursor for the biosynthesis of sterols, ubiquinones, dolichols, heme A, and prenylated proteins. The blockade of FPPS prevents the synthesis of farnesyl diphosphate and the downstream essential products. Due to its crucial role in isoprenoid biosynthesis, this enzyme has been winnowed as a molecular target for the treatment of different bone disorders and to control parasitic diseases, particularly, those produced by trypanosomatids and Apicomplexan parasites. AREAS COVERED: This article discusses some relevant structural features of farnesyl pyrophosphate synthase. It also discusses the precise mode of action of relevant modulators, including both bisphosphonate and non-bisphosphonate inhibitors and the recent advances made in the development of effective inhibitors of the enzymatic activity of this target enzyme. EXPERT OPINION: Notwithstanding their lack of drug-like character, bisphosphonates are still the most advantageous class of inhibitors of the enzymatic activity of farnesyl pyrophosphate synthase. The poor drug-like character is largely compensated by the high affinity of the bisphosphonate moiety by bone mineral hydroxyapatite in humans. Several bisphosphonates are currently in use for the treatment of a variety of bone disorders. Currently, the great prospects that bisphosphonates behave as antiparasitic agents is due to their accumulation in acidocalcisomes, organelles with equivalent composition to bone mineral, hence facilitating their antiparasitic action.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Antiparasitarios/farmacología , Enfermedades Óseas/tratamiento farmacológico , Enfermedades Óseas/patología , Difosfonatos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Geraniltranstransferasa/metabolismo , Humanos , Terapia Molecular Dirigida , Enfermedades Parasitarias/tratamiento farmacológico , Enfermedades Parasitarias/parasitología , Fosfatos de Poliisoprenilo/metabolismo , Sesquiterpenos/metabolismo
17.
ChemMedChem ; 11(24): 2690-2702, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27886451

RESUMEN

Two obligate intracellular parasites, Trypanosoma cruzi, the agent of Chagas disease, and Toxoplasma gondii, an agent of toxoplasmosis, upregulate the mevalonate pathway of their host cells upon infection, which suggests that this host pathway could be a potential drug target. In this work, a number of compounds structurally related to WC-9 (4-phenoxyphenoxyethyl thiocyanate), a known squalene synthase inhibitor, were designed, synthesized, and evaluated for their effect on T. cruzi and T. gondii growth in tissue culture cells. Two fluorine-containing derivatives, the 3-(3-fluorophenoxy)- and 3-(4-fluorophenoxy)phenoxyethyl thiocyanates, exhibited half-maximal effective concentration (EC50 ) values of 1.6 and 4.9 µm, respectively, against tachyzoites of T. gondii, whereas they showed similar potency to WC-9 against intracellular T. cruzi (EC50 values of 5.4 and 5.7 µm, respectively). In addition, 2-[3- (phenoxy)phenoxyethylthio]ethyl-1,1-bisphosphonate, which is a hybrid inhibitor containing 3-phenoxyphenoxy and bisphosphonate groups, has activity against T. gondii proliferation at sub-micromolar levels (EC50 =0.7 µm), which suggests a combined inhibitory effect of the two functional groups.


Asunto(s)
Flúor/química , Modelos Moleculares , Éteres Fenílicos/farmacología , Tiocianatos/farmacología , Toxoplasma/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiparasitarios/química , Antiparasitarios/farmacología , Chlorocebus aethiops , Simulación por Computador , Cristalografía por Rayos X , Humanos , Éteres Fenílicos/química , Homología de Secuencia de Ácido Nucleico , Tiocianatos/química , Células Vero
18.
ChemMedChem ; 10(6): 1094-108, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25914175

RESUMEN

As a part of our project aimed at searching for new safe chemotherapeutic agents against parasitic diseases, several compounds structurally related to the antiparasitic agent WC-9 (4-phenoxyphenoxyethyl thiocyanate), which were modified at the terminal phenyl ring, were designed, synthesized, and evaluated as growth inhibitors against Trypanosoma cruzi, the etiological agent of Chagas disease, and Toxoplasma gondii, the parasite responsible of toxoplasmosis. Most of the synthetic analogues exhibited similar antiparasitic activity and were slightly more potent than our lead WC-9. For example, two trifluoromethylated derivatives exhibited ED50 values of 10.0 and 9.2 µM against intracellular T. cruzi, whereas they showed potent action against tachyzoites of T. gondii (ED50 values of 1.6 and 1.9 µM against T. gondii). In addition, analogues of WC-9 in which the terminal aryl group is in the meta position with respect to the alkyl chain bearing the thiocyanate group showed potent inhibitory action against both T. cruzi and T. gondii at the very low micromolar range, which suggests that a para-phenyl substitution pattern is not necessary for biological activity.


Asunto(s)
Antiprotozoarios/farmacología , Tiocianatos/farmacología , Toxoplasma/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Animales , Chlorocebus aethiops , Toxoplasma/crecimiento & desarrollo , Trypanosoma cruzi/crecimiento & desarrollo , Células Vero
19.
J Med Chem ; 45(18): 3984-99, 2002 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-12190320

RESUMEN

As a continuation of our project aimed at the search for new and safe chemotherapeutic and chemoprophylactic agents against American trypanosomiasis (Chagas' disease), several drugs structurally related to 4-phenoxyphenoxyethyl thiocyanate (4) were designed, synthesized, and evaluated as antiproliferative agents against the parasite responsible for this disease, the hemoflagellated protozoan Trypanosoma cruzi. This thiocyanate derivative was previously shown to be an effective and potent agent against T. cruzi proliferation. Several drugs possessing thiocyanate groups proved to be effective growth inhibitors of T. cruzi growth. Among the designed compounds, it is important to point out the extremely potent activity shown by 11, 23, 38, 53, 90, 99, and 117 against the epimastigote forms of the parasite. All of them exhibited IC(50) values in the low micromolar range, and these values were comparable with those presented by our lead drug 4 and ketokonazole, a well-known antiparasitic agent. The activity displayed by the nitrogen-containing derivative 90 was very promising with IC(50) values of 3.3 microM. Several other thiocyanate derivatives also proved to be very potent inhibitors of the multiplication of T. cruzi epimastigotes, such as compounds 28, 33, 43, 48, 56, 61, 66, 71, 76, and 124. Compound 43 resulted in being a promising drug because it was also very effective against amastigotes, the clinically more relevant form of the parasite. This compound was 3-fold more potent than 4, while 11 showed nearly the same activity as our lead drug against intracellular T. cruzi. It was very surprising that the experimental juvenoid 124, although fairly devoid of activity against epimastigotes, was very effective against intracellular amastigotes growing in myoblasts. The rest of the designed compounds showed a broad degree of inhibitory action, from moderately active drugs to drugs almost devoid of antiparasitic activity. Compound 43 is an interesting example of an effective antichagasic agent that presents excellent prospectives not only as a lead drug but also to be used for further in vivo studies.


Asunto(s)
Tiocianatos/síntesis química , Tripanocidas/síntesis química , Trypanosoma cruzi/efectos de los fármacos , Animales , Relación Estructura-Actividad , Tiocianatos/química , Tiocianatos/farmacología , Tripanocidas/química , Tripanocidas/farmacología
20.
Eur J Med Chem ; 69: 480-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24090919

RESUMEN

As a part of our project pointed at the search of new safe chemotherapeutic and chemoprophylactic agents against parasitic diseases, several compounds structurally related to 4-phenoxyphenoxyethyl thiocyanate (WC-9), which were modified at the terminal aromatic ring, were designed, synthesized and evaluated as antiproliferative agents against Trypanosoma cruzi, the parasite responsible of American trypanosomiasis (Chagas disease) and Toxoplasma gondii, the etiological agent of toxoplasmosis. Most of the synthetic analogs exhibited similar antiparasitic activity being slightly more potent than the reference compound WC-9. For example, the nitro derivative 13 showed an ED50 value of 5.2 µM. Interestingly, the regioisomer of WC-9, compound 36 showed similar inhibitory action than WC-9 indicating that para-phenyl substitution pattern is not necessarily required for biological activity. The biological evaluation against T. gondii was also very promising. The ED50 values corresponding for 13, 36 and 37 were at the very low micromolar level against tachyzoites of T. gondii.


Asunto(s)
Antiparasitarios/farmacología , Diseño de Fármacos , Éteres Fenílicos/farmacología , Tiocianatos/farmacología , Toxoplasma/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Antiparasitarios/síntesis química , Antiparasitarios/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Éteres Fenílicos/síntesis química , Éteres Fenílicos/química , Relación Estructura-Actividad , Tiocianatos/síntesis química , Tiocianatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA