Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27986721

RESUMEN

It has recently been suggested that oxygenic dismutation of NO into N2 and O2 may occur in the anaerobic methanotrophic "Candidatus Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1. It may represent a new pathway in microbial nitrogen cycling catalyzed by a putative NO dismutase (Nod). The formed O2 enables microbes to employ aerobic catabolic pathways in anoxic habitats, suggesting an ecophysiological niche space of substantial appeal for bioremediation and water treatment. However, it is still unknown whether this physiology is limited to "Ca Methylomirabilis oxyfera" and HdN1 and whether it can be coupled to the oxidation of electron donors other than alkanes. Here, we report insights into an unexpected diversity and remarkable abundance of nod genes in natural and engineered water systems. Phylogenetically diverse nod genes were recovered from a range of contaminated aquifers and N-removing wastewater treatment systems. Together with nod genes from "Ca Methylomirabilis oxyfera" and HdN1, the novel environmental nod sequences formed no fewer than 6 well-supported phylogenetic clusters, clearly distinct from canonical NO reductase (quinol-dependent NO reductase [qNor] and cytochrome c-dependent NO reductase [cNor]) genes. The abundance of nod genes in the investigated samples ranged from 1.6 × 107 to 5.2 × 1010 copies · g-1 (wet weight) of sediment or sludge biomass, accounting for up to 10% of total bacterial 16S rRNA gene counts. In essence, NO dismutation could be a much more widespread physiology than currently perceived. Understanding the controls of this emergent microbial capacity could offer new routes for nitrogen elimination or pollutant remediation in natural and engineered water systems. IMPORTANCE: NO dismutation into N2 and O2 is a novel process catalyzed by putative NO dismutase (Nod). To date, only two bacteria, the anaerobic methane-oxidizing bacterium "Ca Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1, are known to harbor nod genes. In this study, we report efficient molecular tools that can detect and quantify a wide diversity of nod genes in environmental samples. A surprisingly high diversity and abundance of nod genes were found in contaminated aquifers as well as wastewater treatment systems. This evidence indicates that NO dismutation may be a much more widespread physiology in natural and man-made environments than currently perceived. The molecular tools presented here will facilitate further studies on these enigmatic microbes in the future.


Asunto(s)
Bacterias Anaerobias/genética , Bacterias Anaerobias/metabolismo , Óxido Nítrico/metabolismo , Superóxido Dismutasa/genética , Aguas Residuales/química , Oxidación-Reducción , Purificación del Agua
2.
FEMS Microbiol Ecol ; 98(5)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35416241

RESUMEN

Cable bacteria (CB) perform electrogenic sulfur oxidation (e-SOx) by spatially separating redox half reactions over centimetre distances. For freshwater systems, the ecology of CB is not yet well understood, partly because they proved difficult to cultivate. This study introduces a new 'agar pillar' approach to selectively enrich and investigate CB populations. Within sediment columns, a central agar pillar is embedded, providing a sediment-free gradient system in equilibrium with the surrounding sediment. We incubated freshwater sediments from a streambed, a sulfidic lake and a hydrocarbon-polluted aquifer in such agar pillar columns. Microprofiling revealed typical patterns of e-SOx, such as the development of a suboxic zone and the establishment of electric potentials. The bacterial communities in the sediments and agar pillars were analysed over depth by PacBio near-full-length 16S rRNA gene amplicon sequencing, allowing for a precise phylogenetic placement of taxa detected. The selective niche of the agar pillar was preferentially colonized by CB related to Candidatus Electronema for surface water sediments, including several potentially novel species, but not for putative groundwater CB affiliated with Desulfurivibrio spp. The presence of CB was seemingly linked to co-enriched fermenters, hinting at a possible role of e-SOx populations as an electron sink for heterotrophic microbes. These findings add to our current understanding of the diversity and ecology of CB in freshwater systems, and to a discrimination of CB from surface and groundwater sediments. The agar pillar approach provides a new strategy that may facilitate the cultivation of redox gradient-dependent microorganisms, including previously unrecognized CB populations.


Asunto(s)
Electrones , Sedimentos Geológicos , Agar , Bacterias/genética , Sedimentos Geológicos/microbiología , Lagos , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética
3.
FEMS Microbiol Ecol ; 94(6)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29767715

RESUMEN

The availability of oxygen is often a limiting factor for the degradation of aromatic hydrocarbons in subsurface environments. However, while both aerobic and anaerobic degraders have been intensively studied, degradation betwixt, under micro- or hypoxic conditions has rarely been addressed. It is speculated that in environments with limited, but sustained oxygen supply, such as in the vicinity of groundwater monitoring wells, hypoxic degradation may take place. A large diversity of subfamily I.2.C extradiol dioxygenase genes has been previously detected in a BTEX-contaminated aquifer in Hungary. Older literature suggests that such catabolic potentials could be associated to hypoxic degradation. Bacterial communities dominated by members of the Rhodocyclaceae were found, but the majority of the detected C23O genotypes could not be affiliated to any known bacterial degrader lineages. To address this, a stable isotope probing (SIP) incubation of site sediments with 13C7-toluene was performed under microoxic conditions. A combination of 16S rRNA gene amplicon sequencing and T-RFLP fingerprinting of C23O genes from SIP gradient fractions revealed the central role of degraders within the Rhodocyclaceae in hypoxic toluene degradation. The main assimilators of 13C were identified as members of the genera Quatrionicoccus and Zoogloea, and a yet uncultured group of the Rhodocyclaceae.


Asunto(s)
Biodegradación Ambiental , Agua Subterránea/microbiología , Rhodocyclaceae/metabolismo , Tolueno/metabolismo , Sedimentos Geológicos/microbiología , Hungría , Marcaje Isotópico , Oxigenasas/genética , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Rhodocyclaceae/enzimología , Rhodocyclaceae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA