Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 164(1-2): 246-257, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26771494

RESUMEN

Intercellular communication between parasites and with host cells provides mechanisms for parasite development, immune evasion, and disease pathology. Bloodstream African trypanosomes produce membranous nanotubes that originate from the flagellar membrane and disassociate into free extracellular vesicles (EVs). Trypanosome EVs contain several flagellar proteins that contribute to virulence, and Trypanosoma brucei rhodesiense EVs contain the serum resistance-associated protein (SRA) necessary for human infectivity. T. b. rhodesiense EVs transfer SRA to non-human infectious trypanosomes, allowing evasion of human innate immunity. Trypanosome EVs can also fuse with mammalian erythrocytes, resulting in rapid erythrocyte clearance and anemia. These data indicate that trypanosome EVs are organelles mediating non-hereditary virulence factor transfer and causing host erythrocyte remodeling, inducing anemia.


Asunto(s)
Vesículas Extracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei rhodesiense/citología , Trypanosoma brucei rhodesiense/inmunología , Tripanosomiasis Africana/patología , Tripanosomiasis Africana/parasitología , Factores de Virulencia/metabolismo , Anemia/patología , Animales , Eritrocitos/parasitología , Flagelos/metabolismo , Humanos , Evasión Inmune , Ratones , Proteoma/metabolismo , Rodaminas/análisis , Trypanosoma brucei rhodesiense/metabolismo , Trypanosoma brucei rhodesiense/patogenicidad
2.
RNA ; 21(10): 1781-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26264591

RESUMEN

Trypanosomes possess a unique mitochondrial genome called the kinetoplast DNA (kDNA). Many kDNA genes encode pre-mRNAs that must undergo guide RNA-directed editing. In addition, alternative mRNA editing gives rise to diverse mRNAs and several kDNA genes encode open reading frames of unknown function. To better understand the mechanism of RNA editing and the function of mitochondrial RNAs in trypanosomes, we have developed a reverse genetic approach using artificial site-specific RNA endonucleases (ASREs) to directly silence kDNA-encoded genes. The RNA-binding domain of an ASRE can be programmed to recognize unique 8-nucleotide sequences, allowing the design of ASREs to cleave any target RNA. Utilizing an ASRE containing a mitochondrial localization signal, we targeted the extensively edited mitochondrial mRNA for the subunit A6 of the F0F1 ATP synthase (A6) in the procyclic stage of Trypanosoma brucei. This developmental stage, found in the midgut of the insect vector, relies on mitochondrial oxidative phosphorylation for ATP production with A6 forming the critical proton half channel across the inner mitochondrial membrane. Expression of an A6-targeted ASRE in procyclic trypanosomes resulted in a 50% reduction in A6 mRNA levels after 24 h, a time-dependent decrease in mitochondrial membrane potential (ΔΨm), and growth arrest. Expression of the A6-ASRE, lacking the mitochondrial localization signal, showed no significant growth defect. The development of the A6-ASRE allowed the first in vivo functional analysis of an edited mitochondrial mRNA in T. brucei and provides a critical new tool to study mitochondrial RNA biology in trypanosomes.


Asunto(s)
Endonucleasas/metabolismo , Técnicas de Silenciamiento del Gen , ARN Protozoario/genética , ARN/genética , Trypanosoma brucei brucei/genética , Animales , Edición de ARN , ARN Mitocondrial
3.
Nat Rev Microbiol ; 14(11): 669-675, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27615028

RESUMEN

Parasitic unicellular eukaryotes use extracellular vesicles (EVs) as vehicles for intercellular communication and host manipulation. By using various mechanisms to generate EVs and by transferring a wide range of molecules through EVs, pathogenic protozoans are able to establish infective niches, modulate the immune system of the host and cause disease. In addition to effects on the host, EVs are able to transfer virulence factors, drug-resistance genes and differentiation factors between parasites. In this Progress article, we explore recent insights into the biology of EVs from human infectious protozoan parasites, including Trichomonas vaginalis, Plasmodium spp. and kinetoplastids, such as Trypanosoma spp. and Leishmania spp.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares/fisiología , Parásitos/fisiología , Animales , Transporte Biológico , Interacciones Huésped-Parásitos , Humanos , Leishmania/inmunología , Leishmania/patogenicidad , Leishmania/fisiología , Parásitos/inmunología , Parásitos/patogenicidad , Plasmodium/inmunología , Plasmodium/patogenicidad , Plasmodium/fisiología , Trichomonas vaginalis/inmunología , Trichomonas vaginalis/patogenicidad , Trichomonas vaginalis/fisiología , Trypanosoma/inmunología , Trypanosoma/patogenicidad , Trypanosoma/fisiología , Factores de Virulencia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA