RESUMEN
T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) expression has been a trending topic in recent years due to its differential expression in a wide range of neoplasms. TIM-3 is one of the key immune checkpoint receptors that interact with GAL-9, PtdSer, HMGB1 and CEACAM1. Initially identified on the surface of T helper 1 (Th1) lymphocytes and later on cytotoxic lymphocytes (CTLs), monocytes, macrophages, natural killer cells (NKs), and dendritic cells (DCs), TIM-3 plays a key role in immunoregulation. Recently, a growing body of evidence has shown that its differential expression in various tumor types indicates a specific prognosis for cancer patients. Here, we discuss which types of cancer TIM-3 can serve as a prognostic factor and the influence of coexpressed immune checkpoint inhibitors, such as LAG-3, PD-1, and CTLA-4 on patients' outcomes. Currently, experimental medicine involving TIM-3 has significantly enhanced the anti-tumor effect and improved patient survival. In this work, we summarized clinical trials incorporating TIM-3 targeting monoclonal and bispecific antibodies in monotherapy and combination therapy and highlighted the emerging role of cell-based therapies.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Receptor 2 Celular del Virus de la Hepatitis A , Inmunidad , Inmunoterapia , Neoplasias/terapiaRESUMEN
This paper aims to overview different types of stress, including DNA replication stress, oxidative stress, and psychological stress. Understanding the processes that constitute a cellular response to varied types of stress lets us find differences in how normal cells and cancer cells react to the appearance of a particular kind of stressor. The revealed dissimilarities are the key for targeting new molecules and signaling pathways in anticancer treatment. For this reason, molecular mechanisms that underlay DNA replication stress, oxidative stress, and psychological stress have been studied and briefly presented to indicate biochemical points that make stressors contribute to cancer development. What is more, the viewpoint in which cancer constitutes the outcome and the cause of stress has been taken into consideration. In a described way, this paper draws attention to the problem of cancer-related post-traumatic stress disorder and proposes a novel, multidimensional oncological approach, connecting anticancer treatment with psychiatric support.
Asunto(s)
Trastornos por Estrés Postraumático , Carcinogénesis/genética , Humanos , Estrés Oxidativo/fisiología , Trastornos por Estrés Postraumático/etiología , Estrés Psicológico/genéticaRESUMEN
LAG-3 (Lymphocyte activation gene 3) protein is a checkpoint receptor that interacts with LSEC-tin, Galectin-3 and FGL1. This interaction leads to reduced production of IL-2 and IFN-γ. LAG-3 is widely expressed in different tumor types and modulates the tumor microenvironment through immunosuppressive effects. Differential expression in various tumor types influences patient prognosis, which is often associated with coexpression with immune checkpoint inhibitors, such as TIM-3, PD-1 and CTLA-4. Here, we discuss expression profiles in different tumor types. To date, many clinical trials have been conducted using LAG-3 inhibitors, which can be divided into anti-LAG-3 monoclonal antibodies, anti-LAG-3 bispecifics and soluble LAG-3-Ig fusion proteins. LAG-3 inhibitors supress T-cell proliferation and activation by disallowing for the interaction between LAG-3 to MHC-II. The process enhances anti-tumor immune response. In this paper, we will review the current state of knowledge on the structure, function and expression of LAG-3 in various types of cancer, as well as its correlation with overall prognosis, involvement in cell-based therapies and experimental medicine. We will consider the role of compounds targeting LAG-3 in clinical trials both as monotherapy and in combination, which will provide data relating to the efficacy and safety of proposed drug candidates.
Asunto(s)
Neoplasias , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Fibrinógeno , Humanos , Activación de Linfocitos , Neoplasias/tratamiento farmacológico , Microambiente TumoralRESUMEN
Breast cancer is one of the most common malignant neoplasms, and despite the dynamic development of anticancer therapies, 5-year survival in the metastatic stage is still less than 30%. 6-Gingerol (1-[4'-hydroxy-3'-methoxyphenyl]-5-hydroxy-3-decanone) is a substance contained in ginger, which exhibits anti-cancer properties. Paclitaxel is a cytostatic substance used to treat breast cancer, but its therapeutically effective dose has many adverse effects. The aim of the presented study was to assess the anticancer effect of 6-gingerol and the possibility of increasing the effectiveness of Paclitaxel in the death induction of wild type human breast cancer cells. MCF-7/WT cells were treated with drugs-6-gingerol and paclitaxel at selected concentrations. The mitochondrial activity assay, caspase 7 activity assay, ATP assay, microscopy studies, and RT-PCR assays were performed to evaluate the antitumor activity and mechanism of action of both compounds, alone and in combination. After 72 h of incubation, the mitochondrial activity showed that the combination of 5 nM Paclitaxel with 10 µM 6-Gingerol led to the same decrease in viability as the use of 20 nM Paclitaxel alone; 10 µM 6-Gingerol led to an enhancement of caspase 7 activity, with the highest activity observed after 24 h of incubation. A real-time PCR study showed that 6-Gingerol induces the simultaneous transcription of Bax with TP53 genes in large excess to BCL-2. In contrast, 5 nM Paclitaxel induces TP53 transcription in excess of BCL-2 and Bax. Our results suggest that 6-Gingerol may act as a cell death-inducing agent in cancer cells and, in combination with paclitaxel, and increase the effectiveness of conventional chemotherapy.
Asunto(s)
Adenocarcinoma , Neoplasias de la Mama , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Caspasa 7 , Catecoles , Línea Celular Tumoral , Alcoholes Grasos , Femenino , Humanos , Paclitaxel , Proteína X Asociada a bcl-2RESUMEN
Muscular atrophy (MA) is a disease of various origins, i.e., genetic or the most common, caused by mechanical injury. So far, there is no universal therapeutic model because this disease is often progressive with numerous manifested symptoms. Moreover, there is no safe and low-risk therapy dedicated to muscle atrophy. For this reason, our research focuses on finding an alternative method using natural compounds to treat MA. This study proposes implementing natural substances such as celastrol and Rhynchophylline on the cellular level, using a simulated and controlled atrophy process. Methods: Celastrol and Rhynchophylline were used as natural compounds against simulated atrophy in C2C12 cells. Skeletal muscle C2C12 cells were stimulated for the differentiation process. Atrophic conditions were obtained by the exposure to the low concertation of doxorubicin and validated by FoxO3 and MAFbx. The protective and regenerative effect of drugs on cell proliferation was determined by the MTT assay and MT-CO1, VDAC1, and prohibitin expression. Results: The obtained results revealed that both natural substances reduced atrophic symptoms. Rhynchophylline and celastrol attenuated atrophic cells in the viability studies, morphology analysis by diameter measurements, modulated prohibitin VDAC, and MT-CO1 expression. Conclusions: The obtained results revealed that celastrol and Rhynchophylline could be effectively used as a supportive treatment in atrophy-related disorders. Thus, natural drugs seem promising for muscle regeneration.
RESUMEN
The application of ginkgolides as a herbal remedy reaches ancient China. Over time many studies confirmed the neuroprotective effect of standard Ginkgo biloba tree extract-the only available ginkgolide source. Ginkgolides present a wide variety of neuroregulatory properties, commonly used in the therapy process of common diseases, such as Alzheimer's, Parkinson's, and many other CNS-related diseases and disorders. The neuroregulative properties of ginkgolides include the conditioning of neurotransmitters action, e.g., glutamate or dopamine. Besides, natural compounds induce the inhibition of platelet-activating factors (PAF). Furthermore, ginkgolides influence the inflammatory process. This review focuses on the role of ginkgolides as neurotransmitters or neuromodulators and overviews their impact on the organism at the molecular, cellular, and physiological levels. The clinical application of ginkgolides is discussed as well.
Asunto(s)
Ginkgólidos/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Animales , Biomarcadores , Estudios Clínicos como Asunto , Manejo de la Enfermedad , Evaluación Preclínica de Medicamentos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Ginkgo biloba/química , Ginkgólidos/química , Ginkgólidos/uso terapéutico , Humanos , Inmunomodulación/efectos de los fármacos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Neurotransmisores/química , Neurotransmisores/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Resultado del TratamientoRESUMEN
Electroporation is influenced by the features of the targeted cell membranes, e.g., the cholesterol content and the surface tension of the membrane. The latter is eventually affected by the organization of actin fibers. Atorvastatin is a statin known to influence both the cholesterol content and the organization of actin. This work analyzes the effects of the latter on the efficacy of electroporation of cancer cells. In addition, herein, electroporation was combined with calcium chloride (CaEP) to assess as well the effects of the statin on the efficacy of electrochemotherapy. Cholesterol-rich cell lines MDA-MB231, DU 145, and A375 underwent (1) 48 h preincubation or (2) direct treatment with 50 nM atorvastatin. We studied the impact of the statin on cholesterol and actin fiber organization and analyzed the cells' membrane permeability. The viability of cells subjected to PEF (pulsed electric field) treatments and CaEP with 5 mM CaCl2 was examined. Finally, to assess the safety of the therapy, we analyzed the N-and E-cadherin localization using confocal laser microscopy. The results of our investigation revealed that depending on the cell line, atorvastatin preincubation decreases the total cholesterol in the steroidogenic cells and induces reorganization of actin nearby the cell membrane. Under low voltage PEFs, actin reorganization is responsible for the increase in the electroporation threshold. However, when subject to high voltage PEF, the lipid composition of the cell membrane becomes the regulatory factor. Namely, preincubation with atorvastatin reduces the cytotoxic effect of low voltage pulses and enhances the cytotoxicity and cellular changes induced by high voltage pulses. The study confirms that the surface tension regulates of membrane permeability under low voltage PEF treatment. Accordingly, to reduce the unfavorable effects of preincubation with atorvastatin, electroporation of steroidogenic cells should be performed at high voltage and combined with a calcium supply.
Asunto(s)
Antineoplásicos/farmacología , Atorvastatina/farmacología , Calcio/metabolismo , Colesterol/metabolismo , Electroquimioterapia/métodos , Electroporación/métodos , Neoplasias/terapia , Anticolesterolemiantes/farmacología , Apoptosis , Membrana Celular , Permeabilidad de la Membrana Celular , Proliferación Celular , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Células Tumorales CultivadasRESUMEN
Cancer cell possesses numerous adaptations to resist the immune system response and chemotherapy. One of the most significant properties of the neoplastic cells is the altered lipid metabolism, and consequently, the abnormal cell membrane composition. Like in the case of phosphatidylcholine, these changes result in the modulation of certain enzymes and accumulation of energetic material, which could be used for a higher proliferation rate. The changes are so prominent, that some lipids, such as phosphatidylserines, could even be considered as the cancer biomarkers. Additionally, some changes of biophysical properties of cell membranes lead to the higher resistance to chemotherapy, and finally to the disturbances in signalling pathways. Namely, the increased levels of certain lipids, like for instance phosphatidylserine, lead to the attenuation of the immune system response. Also, changes in lipid saturation prevent the cells from demanding conditions of the microenvironment. Particularly interesting is the significance of cell membrane cholesterol content in the modulation of metastasis. This review paper discusses the roles of each lipid type in cancer physiology. The review combined theoretical data with clinical studies to show novel therapeutic options concerning the modulation of cell membranes in oncology.
Asunto(s)
Membrana Celular/metabolismo , Metabolismo de los Lípidos/fisiología , Neoplasias/metabolismo , Humanos , Fosfolípidos/metabolismo , Transducción de SeñalRESUMEN
Irreversible electroporation (IRE) is today used as an alternative to surgery for the excision of cancer lesions. This study aimed to investigate the oxidative and cytotoxic effects the cells undergo during irreversible electroporation using IRE protocols. To do so, we used IRE-inducing pulsed electric fields (PEFs) (eight pulses of 0.1 ms duration and 2-4 kV/cm intensity) and compared their effects to those of PEFs of intensities below the electroporation threshold (eight pulses, 0.1 ms, 0.2-0.4 kV/cm) and the PEFs involving elongated pulses (eight pulses, 10 ms, 0.2-0.4 kV/cm). Next, to follow the morphology of the melanoma cell membranes after treatment with the PEFs, we analyzed the permeability and integrity of their membranes and analyzed the radical oxygen species (ROS) bursts and the membrane lipids' oxidation. Our data showed that IRE-induced high cytotoxic effect is associated both with irreversible cell membrane disruption and ROS-associated oxidation, which is occurrent also in the low electric field range. It was shown that the viability of melanoma cells characterized by similar ROS content and lipid membrane oxidation after PEF treatment depends on the integrity of the membrane system. Namely, when the effects of the PEF on the membrane are reversible, aside from the high level of ROS and membrane oxidation, the cell does not undergo cell death.
Asunto(s)
Membrana Celular/química , Electroporación/métodos , Lípidos/química , Melanoma/patología , Estrés Oxidativo , Neoplasias Cutáneas/patología , Benzoxazoles/análisis , Benzoxazoles/metabolismo , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Humanos , Técnicas In Vitro , Melanoma/metabolismo , Compuestos de Quinolinio/análisis , Compuestos de Quinolinio/metabolismo , Neoplasias Cutáneas/metabolismo , Células Tumorales CultivadasRESUMEN
Electroporation, applied as a non-thermal ablation method has proven to be effective for focal prostate treatment. In this study, we performed pre-clinical research, which aims at exploring the specific impact of this so-called calcium electroporation on prostate cancer. First, in an in-vitro study of DU 145 cell lines, microsecond electroporation (µsEP) parameters were optimized. We determined hence the voltage that provides both high permeability and viability of these prostate cancer cells. Subsequently, we compared the effect of µsEP on cells' viability with and without calcium administration. For high-voltage pulses, the cell death's mechanism was evaluated using flow-cytometry and confocal laser microscopy. For lower-voltage pulses, the influence of electroporation on prostate cancer cell mobility was studied using scratch assays. Additionally, we applied calcium-binding fluorescence dye (Fluo-8) to observe the calcium uptake dynamic with the fluorescence microscopy. Moreover, the molecular dynamics simulation visualized the process of calcium ions inflow during µsEP. According to our results calcium electroporation significantly decreases the cells viability by promoting apoptosis. Furthermore, our data shows that the application of pulsed electric fields disassembles the actin cytoskeleton and influences the prostate cancer cells' mobility.
Asunto(s)
Adenocarcinoma/patología , Calcio/metabolismo , Electroporación/métodos , Neoplasias de la Próstata/patología , Actinas/metabolismo , Apoptosis , Caspasa 3/metabolismo , Muerte Celular , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Movimiento Celular , Supervivencia Celular , Espacio Extracelular/metabolismo , Humanos , Masculino , Simulación de Dinámica Molecular , NecrosisRESUMEN
Cepharanthine (CEP) is a bisbenzylisoquinoline alkaloid. Molecular dynamics studies show that CEP interacts with Voltage-dependent anion channel (VDAC), inducing the voltage-independent channel narrowing. In the new conformation, transport between mitochondria and cytoplasm is altered, which leads to the dose-dependent cytotoxicity. The biological effects of the interaction were investigated on glioblastoma multiforme (SNB-19) and neuronal (PC-12 + NGF) cell lines. The cytotoxic potential of cepharanthine was determined by MTT assay and flow cytometry apoptosis/necrosis studies. T-type calcium channel and VDAC were labelled by the immunocytochemical method. Additionally, fluorescent labelling of reactive oxygen species and mitochondria was performed. Changes in the pore size of VDAC were calculated as well. Molecular dynamics simulations were carried out to examine the interactions of cepharanthine with VDAC. The obtained results prove that cepharanthine enhances the apoptosis in glioma and neuronal cells by the release of reactive oxygen species. Cepharanthine alters the mitochondria-to-cytoplasm transport and thus induces the cytotoxicity with no selectivity.
RESUMEN
Multiple myeloma (MM), a malignancy of plasma cells, is an incurable disease that is characterized by the neoplastic proliferation of plasma cells leading to extensive skeletal destruction. This includes osteolytic lesions, osteopenia, and pathologic fractures. MM is clinically manifested through bone pain, renal insufficiency, hypercalcemia, anemia, and recurrent infections. Its prevalence and the need for effective treatment underscore the importance of this research. Recent advancements in MM therapy have been significant, particularly with the integration of daratumumab into first-line treatments. The use of daratumumab in regimens such as DRD (Daratumumab, Revlimid, Dexamethasone) and D-RVd (Daratumumab, Lenalidomide, Bortezomib, Dexamethasone) represents a paradigm shift in the treatment landscape. GRIFFIN and CASSIOPEIA trials have highlighted the efficacy of these regimens, particularly in prolonging progression-free survival and deepening patient responses. The shift from older regimens like MPV (Melphalan, Prednisone, Velcade) to more effective ones like DRD and RVD has been pivotal in treatment strategies. This review also focuses on the potential of Chimeric Antigen Receptor T-cell therapy and bispecific antibodies in MM. CAR-T therapy, which has shown success in other hematological malignancies, is being explored for its ability to specifically target MM cells. The latest clinical trials and research findings are analyzed to evaluate the efficacy and challenges of CAR-T therapy in MM. Additionally, the role of bispecific antibodies, which are designed to bind both cancer cells and T cells, is explored. These antibodies offer a unique mechanism that could complement the effects of CAR-T therapy.
Asunto(s)
Anticuerpos Biespecíficos , Inmunoterapia Adoptiva , Mieloma Múltiple , Humanos , Mieloma Múltiple/inmunología , Mieloma Múltiple/terapia , Mieloma Múltiple/tratamiento farmacológico , Anticuerpos Biespecíficos/uso terapéutico , Inmunoterapia Adoptiva/métodos , Animales , Receptores Quiméricos de Antígenos/inmunologíaRESUMEN
Chimeric antigen receptor T (CAR-T) cell therapy, a groundbreaking immunotherapy. However, it faces formidable challenges in treating solid tumors, grappling with issues like poor trafficking, limited penetration, and insufficient persistence within the tumor microenvironment (TME). CAR-T cells are engineered to express receptors that target specific cancer antigens, enhancing their ability to recognize and eliminate cancer cells. This review paper explores the intricate interplay between CAR-T therapy and radiotherapy (RT), investigating their synergistic potential. Radiotherapy, a standard cancer treatment, involves using high doses of radiation to target and damage cancer cells, disrupting their ability to grow and divide. We highlight that RT modulates the TME, augments antigen presentation, and promotes immune cell infiltration, bolstering CAR-T cell-mediated tumor eradication. Molecular insights shed light on RT-induced alterations in tumor stroma, T cell recruitment promotion, and induction of immunogenic cell death. Noteworthy, strategies, such as combining hypofractionated radiotherapy with myeloid-derived suppressor cell blockade, underscore innovative approaches to enhance CAR-T cell therapy in solid tumors. Bridging indications for RT and CAR-T cells in hematological malignancies are discussed, emphasizing scenarios where RT strategically enhances CAR-T cell efficacy. The paper critically evaluates the RT as a bridge compared to traditional chemotherapy, highlighting timing and dosage considerations crucial for optimizing CAR-T therapy outcomes. In summary, the paper provides valuable insights into the intricate molecular mechanisms activated by RT and innovative strategies to improve CAR-T cell therapy, fostering a deeper understanding of their combined potential in cancer treatment.
Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/radioterapia , Neoplasias/inmunología , Neoplasias/patología , Inmunoterapia Adoptiva/métodos , Animales , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Terapia Combinada/métodos , Radioterapia/métodosRESUMEN
Colon cancer (CC) management includes surgery, radio- and chemotherapy based on treatment with 5-fluorouracil (5-FU) or its derivatives. However, its application is limited to low-grade carcinomas. Thus, much research has been conducted to introduce new techniques and drugs to the therapy. CC mostly affects older people suffering from cardiac diseases, where iron compounds are commonly used. Ferric citrate and iron (III)-EDTA complexes have proven to be effective in colon cancer in vitro. This study aimed to determine the potency and action of iron-containing compounds in colon cancer treatment by chemo- and electrochemotherapy in both nano- and microsecond protocols. The viability of the cells was assessed after standalone iron (III) citrate and iron (III)-EDTA incubation. Both compounds were also assessed with 5-FU to determine the combination index. Additionally, frataxin expression was taken as the quantitative response to the exposition of iron compounds. Each of the substances exhibited a cytotoxic effect on the LoVo cell line. Electroporation with standalone drugs revealed the potency of 5-FU and iron(III)-EDTA in CC treatment. The combination of 5-FU with iron(III)-EDTA acted synergistically, increasing the viability of the cells in the nanosecond electrochemotherapy protocol. Iron(III)-EDTA decreased the frataxin expression, thus inducing ferroptosis. Iron(III) citrate induced the progression of cancer; therefore, it should not be considered as a potential therapeutic option. The relatively low stability of iron(III) citrate leads to the delivery of citrate anions to cancer cells, which could increase the Krebs cycle rate and promote progression.
RESUMEN
Background and objective: Lymphovascular invasion (LVI) is a significant histopathological feature in prostate cancer (PCa) associated with higher risk of biochemical recurrence (BCR) and other adverse outcomes. Our aim was to assess the association of LVI found in radical prostatectomy (RP) specimens with BCR and adverse clinicopathological findings. Methods: A systematic literature search was conducted using the PubMed, Embase, and Web of Science databases in July 2023, with an additional search in May 2024. We included 94 prospective and retrospective studies reporting on LVI in RP specimens and its association with the specified outcomes. Key findings and limitations: Meta-analyses revealed that LVI is significantly associated with higher BCR risk (hazard ratio 1.96, 95% confidence interval [CI] 1.73-2.21), higher pathological tumour stage (odds ratio [OR] 5.77; 95% CI 3.96-8.40), higher Gleason score (OR 5.19, 95% CI 4.12-6.54), lymph node metastasis (OR 11.52, 95% CI 7.65-17.34), distant metastasis (OR 9.10, 95% CI 5.46-15.17), positive surgical margins (OR 2.38, 95% CI 1.83-3.09), extraprostatic extension (OR 5.01, 95% CI 3.11-8.06), seminal vesicle invasion (OR 7.50, 95% CI 3.47-16.23), and perineural invasion (OR 133.71, 95% CI 65.93-271.15). Major limitations of this study include high heterogeneity of the data and the reliance on nonrandomised studies. Conclusions and clinical implications: Our findings reveal that LVI is associated with nearly twofold higher risk of BCR, highlighting its potential role as a critical prognostic marker. Patient summary: We analysed data from multiple studies to understand the impact of the spread of prostate cancer into the lymph or blood vessels, called lymphovascular invasion (LVI). We found that LVI is linked to a higher risk of cancer recurrence after surgery and other negative outcomes. Our findings highlight the importance of considering LVI in treatment decisions for better management of prostate cancer.
RESUMEN
Nanosecond pulsed electric field (nsPEF) has emerged as a promising approach for inducing cell death in melanoma, either as a standalone treatment or in combination with chemotherapeutics. However, to date, there has been a shortage of studies exploring the impact of nsPEF on the expression of cancer-specific molecules. In this investigation, we sought to assess the effects of nsPEF on melanoma-specific MAGE (Melanoma Antigen Gene Protein Family) expression. To achieve this, melanoma cells were exposed to nsPEF with parameters set at 8 kV/cm, 200 ns duration, 100 pulses, and a frequency of 10 kHz. We also aimed to comprehensively describe the consequences of this electric field on melanoma cells' invasion and proliferation potential. Our findings reveal that following exposure to nsPEF, melanoma cells release microvesicles containing MAGE antigens, leading to a simultaneous increase in the expression and mRNA content of membrane-associated antigens such as MAGE-A1. Notably, we observed an unexpected increase in the expression of PD-1 as well. While we did not observe significant differences in the cells' proliferation or invasion potential, a remarkable alteration in the cells' metabolomic and lipidomic profiles towards a less aggressive phenotype was evident. Furthermore, we validated these results using ex vivo tissue cultures and 3D melanoma culture models. Our study demonstrates that nsPEF can elevate the expression of membrane-associated proteins, including melanoma-specific antigens. The mechanism underlying the overexpression of MAGE antigens involves the initial release of microvesicles containing MAGE antigens, followed by a gradual increase in mRNA levels, ultimately resulting in elevated expression of MAGE antigens post-experiment. These findings shed light on a novel method for modulating cancer cells to overexpress cancer-specific molecules, thereby potentially enhancing their sensitivity to targeted anticancer therapy.
Asunto(s)
Exocitosis , Antígenos Específicos del Melanoma , Melanoma , Humanos , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Melanoma/inmunología , Línea Celular Tumoral , Antígenos Específicos del Melanoma/metabolismo , Antígenos Específicos del Melanoma/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genéticaRESUMEN
Drug delivery using nanosecond pulsed electric fields is a new branch of electroporation-based treatments, which potentially can substitute European standard operating procedures for electrochemotherapy. In this work, for the first time, we characterize the effects of ultra-fast repetition frequency (1-2.5 MHz) nanosecond pulses (5-9 kV/cm, 200 and 400 ns) in the context of nano-electrochemotherapy with calcium. Additionally, we investigate the feasibility of bipolar symmetric (↑200 ns + ↓200 ns) and asymmetric (↑200 ns + ↓400 ns) nanosecond protocols for calcium delivery. The effects of bipolar cancellation and the influence of interphase delay (200 ns) are overviewed. Human lung cancer cell lines A549 and H69AR were used as a model. It was shown that unipolar pulses delivered at high frequency are effective for electrochemotherapy with a significant improvement in efficiency when the delay between separate pulses is reduced. Bipolar symmetric pulses trigger the cancellation phenomenon limiting applications for drug delivery and can be compensated by the asymmetry of the pulse (↑200 ns + ↓400 ns or ↑400 ns + ↓200 ns). The results of this study can be successfully used to derive a new generation of nsPEF protocols for successful electrochemotherapy treatments.
Asunto(s)
Electroquimioterapia , Humanos , Electroquimioterapia/métodos , Calcio/metabolismo , Electroporación/métodos , ElectricidadRESUMEN
Checkpoint molecules such as PD-1, LAG-3, and TIM-3 are currently under extensive investigation for their roles in the attenuation of the immune response in cancer. Various methods have been applied to overcome the challenges in this field. This study investigated the effects of nanosecond pulsed electric field (nsPEF) treatment on the expression of immune checkpoint molecules in A375 and C32 melanoma cells. The researchers found that the nsPEF treatment was able to enhance membrane permeabilization and morphological changes in the cell membrane without being cytotoxic. We found that the effects of nsPEFs on melanoma included (1) the transport of vesicles from the inside to the outside of the cells, (2) cell contraction, and (3) the migration of lipids from inside the cells to their peripheries. The treatment increased the expression of PD-1 checkpoint receptors. Furthermore, we also observed potential co-localization or clustering of MHC class II and PD-1 molecules on the cell surface and the secretion of cytokines such as TNF-α and IL-6. These findings suggest that nsPEF treatment could be a viable approach to enhance the delivery of therapeutic agents to cancer cells and to modulate the tumor microenvironment to promote an antitumor immune response. Further studies are needed to explore the mechanisms underlying these effects and their impacts on the antitumor immune response, and to investigate the potential of nsPEF treatment in combination with immune checkpoint inhibitors to improve clinical outcomes for cancer patients.
RESUMEN
Nanosecond pulsed electric fields (nsPEF) have been shown to exert anticancer effects; however, little is known about the mechanisms triggered in cancer cells by nanosecond-length pulses, especially when low, sub-permeabilization voltage is used. In this study, three human pancreatic cancer cell lines were treated with nsPEF and molecular changes at the cellular level were analyzed. Further, we assessed the efficacy of paclitaxel chemotherapy following nsPEF treatment and correlated that with the changes in the expression of multi-drug resistance (MDR) proteins. Finally, we examined the influence of nsPEF on the adhesive properties of cancer cells as well as the formation and growth of pancreatic cancer spheroids. Cell line response differed with the application of a 200 ns, 100 pulses, 8 kV/cm, 10 kHz PEF treatment. PEF treatment led to (1) the release of microvesicles (MV) in EPP85-181RDB cells, (2) electropermeabilization in EPP85-181RNOV cells and (3) cell shrinkage in EPP85-181P cells. The release of MV's in EPP85-181RDB cells reduced the membrane content of P-gp and LRP, leading to a transient increase in vulnerability of the cells towards paclitaxel. In all cell lines we observed an initial reduction in size of the cancer spheroids after the nsPEF treatment. Cell line EPP85-181RNOV exhibited a permanent reduction in the spheroid size after nsPEF. We propose a mechanism in which the surface tension of the membrane, regulated by the organization of actin fibers, modulates the response of cancer cells towards nsPEF. When a membrane's surface tension remains low, we observed some cells form protrusions and release MVs containing MDR proteins. In contrast, when cell surface tension remains high, the cell membrane is being electroporated. The latter effect may be responsible for the reduced tumor growth following nsPEF treatment.
Asunto(s)
Resistencia a Múltiples Medicamentos , Neoplasias Pancreáticas , Humanos , Línea Celular , Membrana Celular/metabolismo , Electroporación , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Neoplasias PancreáticasRESUMEN
Betulin is a heavily studied natural compound for its use as an anticancer or pro-regenerative agent. The structural similarity between betulin to steroids gives rise to the idea that the substance may as well act as an anti-inflammatory drug. This study is the first to describe the anti-inflammatory properties of betulinic acid, betulin, and its derivatives with amino acids 1,4-diaminebutane (Dab), 1,3-diaminepropane (Dap), Ornithine (Orn), and lysine (Lys) on murine macrophages from lymphoma site. The compounds were compared to dexamethasone. To establish the response of the macrophages to the natural compounds, we tested the viability as well as sensitivity to the inflammatory signaling (IFNγR). IL-6 secretory properties and HSP-70 content in the cells were examined. Furthermore, we characterized the effects of compounds on the inhibition of cyclooxygenase-2 (COX-2) activity both in the enzymatic assays and molecular docking studies. Then, the changes in COX-2 expression after betulin treatment were assessed. Betulin and betulinic acid are the low-cytotoxicity compounds with the highest potential to decrease inflammation via reduced IL-6 secretion. To some extent, they induce the reorganization of IFNγR with nearly no effect on COX-2 activity. Conversely, Bet-Orn and Bet-Lys are highly cytotoxic and induce the aggregation of IFNγR. Besides, Bet-Lys reduces the activity of COX-2 to a higher degree than dexamethasone. Bet-Orn is the only one to increase the HSP-70 content in the macrophages. In case of IL-6 reduction, all compounds were more potent than dexamethasone.