Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Small ; 20(6): e2305655, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37771195

RESUMEN

Na2 Ti3 O7 is considered one of the most promising anode materials for sodium ion batteries due to its superior safety, environmental friendliness, and low manufacturing cost. However, its structural stability and reaction mechanism still have not been fully explored. As the electron beam irradiation introduces a similar impact on the Na2 Ti3 O7 anode as the extraction of Na+ ions during the battery discharge process, the microstructure evolution of the materials is investigated by advanced electron microscopy techniques at the atomic scale. Anisotropic amorphization is successfully observed. Through the integrated differential phase contrast-scanning transmission electron microscopy technique and density functional theory calculation, a phase transition pathway involving a new phase, Na2 Ti24 O49 , is proposed with the reduction of Na atoms. Additionally, it is found that the amorphization is dominated by the surface energy and electron dose rate. These findings will deepen the understanding of structural stability and deintercalation mechanism of the Na2 Ti3 O7 anode, providing new insight into exploring the failure mechanism of electrode materials.

2.
Nanotechnology ; 35(5)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37890477

RESUMEN

Multi-shell transition metal oxide hollow spheres show great potential for applications in energy storage because of their unique multilayered hollow structure with large specific surface area, short electron and charge transport paths, and structural stability. In this paper, the controlled synthesis of NiCo2O4, MnCo2O4, NiMn2O4multi-shell layer structures was achieved by using the solvothermal method. As the anode materials for Li-ion batteries, the three multi-shell structures maintained good stability after 650 long cycles in the cyclic charge/discharge test. Thein situtransmisssion electron microscope characterization combined with cyclic voltammetry tests demonstrated that the three anode materials NiCo2O4, MnCo2O4and NiMn2O4have similar charge/discharge transition mechanisms, and the multi-shell structure can effectively buffer the volume expansion and structural collapse during lithium embedding/delithiation to ensure the stability of the electrode structure and cycling performance. The research results can provide effective guidance for the synathesis and charging/discharging mechanism of multi-shell metal oxide lithium-ion battery anode materials.

3.
Genes Dev ; 29(3): 250-61, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25644601

RESUMEN

The mechanisms by which TGF-ß promotes lung adenocarcinoma (ADC) metastasis are largely unknown. Here, we report that in lung ADC cells, TGF-ß potently induces expression of DOCK4, but not other DOCK family members, via the Smad pathway and that DOCK4 induction mediates TGF-ß's prometastatic effects by enhancing tumor cell extravasation. TGF-ß-induced DOCK4 stimulates lung ADC cell protrusion, motility, and invasion without affecting epithelial-to-mesenchymal transition. These processes, which are fundamental to tumor cell extravasation, are driven by DOCK4-mediated Rac1 activation, unveiling a novel link between TGF-ß and Rac1. Thus, our findings uncover the atypical Rac1 activator DOCK4 as a key component of the TGF-ß/Smad pathway that promotes lung ADC cell extravasation and metastasis.


Asunto(s)
Adenocarcinoma/fisiopatología , Proteínas Activadoras de GTPasa/metabolismo , Neoplasias Pulmonares/fisiopatología , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adenocarcinoma del Pulmón , Animales , Línea Celular Tumoral , Proteínas Activadoras de GTPasa/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Metástasis de la Neoplasia
4.
Sheng Li Xue Bao ; 74(5): 697-704, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36319093

RESUMEN

Diverse types of GABAergic interneurons tend to specialize in their inhibitory control of various aspects of cortical circuit operations. Among the most distinctive interneuron types, chandelier cells (i.e., axo-axonic cells) are a bona fide cell type that specifically innervates pyramidal cells at the axon initial segment, the site of action potential initiation. Chandelier cells have been speculated to exert ultimate inhibitory control over pyramidal cell spiking. Thus, chandelier cells appear to share multiple similarities with basket cells, not only in firing pattern (fast spiking) and molecular components, but also in potentially perisomatic inhibitory control. Unlike basket cells, however, synaptic recruitment of chandelier cells is little known yet. Here, we examined the mediodorsal thalamocortical input to both chandelier cells and basket cells in medial prefrontal cortex, through combining mouse genetic, optogenetic and electrophysiological approaches. We demonstrated that this thalamocortical input produced initially weak, but facilitated synaptic responses at chandelier cells, which enabled chandelier cells to spike persistently. In contrast, this thalamocortical input evoked initially strong, but rapidly depressed synaptic responses at basket cells, and basket cells only fired at the initiation of input. Overall, the distinct synaptic recruitment dynamics further underscores the differences between chandelier cells and basket cells, suggesting that these two types of fast spiking interneurons play different roles in cortical circuit processing and physiological operation.


Asunto(s)
Neuronas , Células Piramidales , Ratones , Animales , Neuronas/fisiología , Células Piramidales/fisiología , Interneuronas , Potenciales de Acción/fisiología , Transmisión Sináptica
5.
Adv Exp Med Biol ; 976: 95-110, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28508316

RESUMEN

In this chapter, we mainly focus on the functions of TRPC channels in brain development, including neural progenitor proliferation, neurogenesis, neuron survival, axon guidance, dendritic morphology, synaptogenesis, and neural plasticity. We also notice emerging advances in understanding the functions of TRPC channels in periphery, especially their functions in sensation and nociception in dorsal root ganglion (DRG). Because TRPC channels are expressed in all major types of glial cells, which account for at least half of total cells in the brain, TRPC channels may act as modulators for glial functions as well. The future challenges for studying these channels could be (1) the detailed protein structures of these channels, (2) their cell type-specific functions, (3) requirement for their specific blockers or activators, and (4) change in the channel conformation in the brain.


Asunto(s)
Encéfalo/metabolismo , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Supervivencia Celular/fisiología
6.
Adv Exp Med Biol ; 976: 35-45, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28508311

RESUMEN

This chapter offers a brief introduction of the functions of TRPC channels in non-neuronal systems. We focus on three major organs of which the research on TRPC channels have been most focused on: kidney, heart, and lung. The chapter highlights on cellular functions and signaling pathways mediated by TRPC channels. It also summarizes several inherited diseases in humans that are related to or caused by TRPC channel mutations and malfunction. A better understanding of TRPC channels functions and the importance of TRPC channels in health and disease should lead to new insights and discovery of new therapeutic approaches for intractable disease.


Asunto(s)
Riñón/metabolismo , Pulmón/metabolismo , Miocardio/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Humanos , Enfermedades Renales/metabolismo , Enfermedades Pulmonares/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(27): 11011-6, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23776229

RESUMEN

Mitochondrial Ca(2+) homeostasis is fundamental to regulation of mitochondrial membrane potential, ATP production, and cellular Ca(2+) homeostasis. It has been known for decades that isolated mitochondria can take up Ca(2+) from the extramitochondrial solution, but the molecular identity of the Ca(2+) channels involved in this action is largely unknown. Here, we show that a fraction of canonical transient receptor potential 3 (TRPC3) channels is localized to mitochondria, a significant fraction of mitochondrial Ca(2+) uptake that relies on extramitochondrial Ca(2+) concentration is TRPC3-dependent, and the up- and down-regulation of TRPC3 expression in the cell influences the mitochondrial membrane potential. Our findings suggest that TRPC3 channels contribute to mitochondrial Ca(2+) uptake. We anticipate our observations may provide insights into the mechanisms of mitochondrial Ca(2+) uptake and advance understanding of the physiological role of TRPC3.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Química Encefálica/genética , Células HeLa , Humanos , Transporte Iónico , Potencial de la Membrana Mitocondrial/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Transporte de Proteínas/genética , Ratas , Canales Catiónicos TRPC/deficiencia , Canales Catiónicos TRPC/genética
8.
J Neurosci ; 34(26): 8665-71, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24966368

RESUMEN

At glutamatergic synapses, local endocytic recycling of AMPA receptors (AMPARs) is important for the supply of a mobile pool of AMPARs required for synaptic potentiation. This local recycling of AMPARs critically relies on the presence of an endocytic zone (EZ) near the postsynaptic density (PSD). The precise mechanisms that couple the EZ to the PSD still remain largely elusive, with the large GTPase Dynamin-3 and the multimeric PSD adaptor protein Homer1 as the two main players identified. Here, we demonstrate that a physical interaction between the X-linked mental retardation protein oligophrenin-1 (OPHN1) and Homer1b/c is crucial for the positioning of the EZ adjacent to the PSD, and present evidence that this interaction is important for OPHN1's role in controlling activity-dependent strengthening of excitatory synapses in the rat hippocampus. Disruption of the OPHN1-Homer1b/c interaction causes a displacement of EZs from the PSD, along with impaired AMPAR recycling and reduced AMPAR accumulation at synapses, in both basal conditions and conditions that can induce synaptic potentiation. Together, our findings unveil a novel role for OPHN1 as an interaction partner of Homer1b/c in spine EZ positioning, and provide new mechanistic insight into how genetic deficits in OPHN1 can lead to impaired synapse maturation and plasticity.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endocitosis/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Plasticidad Neuronal/fisiología , Proteínas Nucleares/metabolismo , Sinapsis/metabolismo , Animales , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Proteínas de Andamiaje Homer , Neuronas/metabolismo , Ratas , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología
9.
Neurosci Bull ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080101

RESUMEN

Axon initial segment (AIS) is the most excitable subcellular domain of a neuron for action potential initiation. AISs of cortical projection neurons (PNs) receive GABAergic synaptic inputs primarily from chandelier cells (ChCs), which are believed to regulate action potential generation and modulate neuronal excitability. As individual ChCs often innervate hundreds of PNs, they may alter the activity of PN ensembles and even impact the entire neural network. During postnatal development or in response to changes in network activity, the AISs and axo-axonic synapses undergo dynamic structural and functional changes that underlie the wiring, refinement, and adaptation of cortical microcircuits. Here we briefly introduce the history of ChCs and review recent research advances employing modern genetic and molecular tools. Special attention will be attributed to the plasticity of the AIS and the ChC-PN connections, which play a pivotal role in shaping the dynamic network under both physiological and pathological conditions.

10.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38659885

RESUMEN

The stability of functional brain network is maintained by homeostatic plasticity, which restores equilibrium following perturbation. As the initiation site of action potentials, the axon initial segment (AIS) of glutamatergic projection neurons (PyNs) undergoes dynamic adjustment that exerts powerful control over neuronal firing properties in response to changes in network states. Although AIS plasticity has been reported to be coupled with the changes of network activity, it is poorly understood whether it involves direct synaptic input to the AIS. Here we show that changes of GABAergic synaptic input to the AIS of cortical PyNs, specifically from chandelier cells (ChCs), are sufficient to drive homeostatic tuning of the AIS within 1-2 weeks, while those from parvalbumin-positive basket cells do not. This tuning is reflected in the morphology of the AIS, the expression level of voltage-gated sodium channels, and the intrinsic neuronal excitability of PyNs. Interestingly, the timing of AIS tuning in PyNs of the prefrontal cortex corresponds to the recovery of changes in social behavior caused by alterations of ChC synaptic transmission. Thus, homeostatic plasticity of the AIS at postsynaptic PyNs may counteract deficits elicited by imbalanced ChC presynaptic input. Teaser: Axon initial segment dynamically responds to changes in local input from chandelier cells to prevent abnormal neuronal functions.

11.
Sci Adv ; 10(31): eadk4331, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093969

RESUMEN

Homeostatic plasticity maintains the stability of functional brain networks. The axon initial segment (AIS), where action potentials start, undergoes dynamic adjustment to exert powerful control over neuronal firing properties in response to network activity changes. However, it is poorly understood whether this plasticity involves direct synaptic input to the AIS. Here, we show that changes of GABAergic synaptic input from chandelier cells (ChCs) drive homeostatic tuning of the AIS of principal neurons (PNs) in the prelimbic (PL) region, while those from parvalbumin-positive basket cells do not. This tuning is evident in AIS morphology, voltage-gated sodium channel expression, and PN excitability. Moreover, the impact of this homeostatic plasticity can be reflected in animal behavior. Social behavior, inversely linked to PL PN activity, shows time-dependent alterations tightly coupled to changes in AIS plasticity and PN excitability. Thus, AIS-originated homeostatic plasticity in PNs may counteract deficits elicited by imbalanced ChC presynaptic input at cellular and behavioral levels.


Asunto(s)
Segmento Inicial del Axón , Axones , Homeostasis , Plasticidad Neuronal , Sinapsis , Animales , Plasticidad Neuronal/fisiología , Segmento Inicial del Axón/metabolismo , Axones/fisiología , Axones/metabolismo , Ratones , Sinapsis/fisiología , Potenciales de Acción , Masculino , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/metabolismo
12.
Nat Commun ; 15(1): 2992, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582768

RESUMEN

Nonlinear transport is a unique functionality of noncentrosymmetric systems, which reflects profound physics, such as spin-orbit interaction, superconductivity and band geometry. However, it remains highly challenging to enhance the nonreciprocal transport for promising rectification devices. Here, we observe a light-induced giant enhancement of nonreciprocal transport at the superconducting and epitaxial CaZrO3/KTaO3 (111) interfaces. The nonreciprocal transport coefficient undergoes a giant increase with three orders of magnitude up to 105 A-1 T-1. Furthermore, a strong Rashba spin-orbit coupling effective field of 14.7 T is achieved with abundant high-mobility photocarriers under ultraviolet illumination, which accounts for the giant enhancement of nonreciprocal transport coefficient. Our first-principles calculations further disclose the stronger Rashba spin-orbit coupling strength and the longer relaxation time in the photocarrier excitation process, bridging the light-property quantitative relationship. Our work provides an alternative pathway to boost nonreciprocal transport in noncentrosymmetric systems and facilitates the promising applications in opto-rectification devices and spin-orbitronic devices.

13.
Nat Neurosci ; 27(1): 116-128, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38012399

RESUMEN

Whole-brain genome editing to correct single-base mutations and reduce or reverse behavioral changes in animal models of autism spectrum disorder (ASD) has not yet been achieved. We developed an apolipoprotein B messenger RNA-editing enzyme, catalytic polypeptide-embedded cytosine base editor (AeCBE) system for converting C·G to T·A base pairs. We demonstrate its effectiveness by targeting AeCBE to an ASD-associated mutation of the MEF2C gene (c.104T>C, p.L35P) in vivo in mice. We first constructed Mef2cL35P heterozygous mice. Male heterozygous mice exhibited hyperactivity, repetitive behavior and social abnormalities. We then programmed AeCBE to edit the mutated C·G base pairs of Mef2c in the mouse brain through the intravenous injection of blood-brain barrier-crossing adeno-associated virus. This treatment successfully restored Mef2c protein levels in several brain regions and reversed the behavioral abnormalities in Mef2c-mutant mice. Our work presents an in vivo base-editing paradigm that could potentially correct single-base genetic mutations in the brain.


Asunto(s)
Trastorno del Espectro Autista , Edición Génica , Animales , Ratones , Masculino , Trastorno del Espectro Autista/genética , Encéfalo , Mutación/genética , Factores de Transcripción MEF2/genética
14.
J Neurosci ; 32(27): 9383-95, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22764246

RESUMEN

Neurotrophin-3 (NT-3) plays numerous important roles in the CNS and the elevation of intracellular Ca(2+) ([Ca(2+)](i)) is critical for these functions of NT-3. However, the mechanism by which NT-3 induces [Ca(2+)](i) elevation remains largely unknown. Here, we found that transient receptor potential canonical (TRPC) 5 protein and TrkC, the NT-3 receptor, exhibited a similar temporal expression in rat hippocampus and cellular colocalization in hippocampal neurons. Stimulation of the neurons by NT-3 induced a nonselective cation conductance and PLCγ-dependent [Ca(2+)](i) elevation, which were both blocked when TRPC5, but not TRPC6 channels, were inhibited. Moreover, the Ca(2+) influx through TRPC5 induced by NT-3 inhibited the neuronal dendritic growth through activation of calmodulin-dependent kinase (CaMK) IIα. In contrast, the Ca(2+) influx through TRPC6 induced by NT-4 promoted the dendritic growth. Thus, TRPC5 acts as a novel and specific mediator for NT-3 to regulate dendrite development through CaMKIIα.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Dendritas/fisiología , Hipocampo/citología , Hipocampo/metabolismo , Neuronas/fisiología , Neurotrofina 3/metabolismo , Canales Catiónicos TRPC/fisiología , Animales , Dendritas/enzimología , Dendritas/metabolismo , Femenino , Hipocampo/enzimología , Masculino , Modelos Neurológicos , Neuronas/enzimología , Neuronas/metabolismo , Neurotrofina 3/fisiología , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPC/genética
15.
Neurosci Bull ; 39(7): 1050-1068, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36849716

RESUMEN

The axon initial segment (AIS) is a highly specialized axonal compartment where the action potential is initiated. The heterogeneity of AISs has been suggested to occur between interneurons and pyramidal neurons (PyNs), which likely contributes to their unique spiking properties. However, whether the various characteristics of AISs can be linked to specific PyN subtypes remains unknown. Here, we report that in the prelimbic cortex (PL) of the mouse, two types of PyNs with axon projections either to the contralateral PL or to the ipsilateral basal lateral amygdala, possess distinct AIS properties reflected by morphology, ion channel expression, action potential initiation, and axo-axonic synaptic inputs from chandelier cells. Furthermore, projection-specific AIS diversity is more prominent in the superficial layer than in the deep layer. Thus, our study reveals the cortical layer- and axon projection-specific heterogeneity of PyN AISs, which may endow the spiking of various PyN types with exquisite modulation.


Asunto(s)
Segmento Inicial del Axón , Ratones , Animales , Sinapsis/fisiología , Células Piramidales/fisiología , Corteza Cerebral , Axones/fisiología
16.
Nat Commun ; 14(1): 413, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36702845

RESUMEN

Although miniature CRISPR-Cas12f systems were recently developed, the editing efficacy and targeting range of derived miniature cytosine and adenine base editors (miniCBEs and miniABEs) have not been comprehensively addressed. Moreover, functional miniCBEs have not yet be established. Here we generate various Cas12f-derived miniCBEs and miniABEs with improved editing activities and diversified targeting scopes. We reveal that miniCBEs generated with traditional cytidine deaminases exhibit wide editing windows and high off-targeting effects. To improve the editing signatures of classical CBEs and derived miniCBEs, we engineer TadA deaminase with mutagenesis screening to generate potent miniCBEs with high precision and minimized off-target effects. We show that newly designed miniCBEs and miniABEs are able to correct pathogenic mutations in cell lines and introduce genetic mutations efficiently via adeno-associated virus delivery in the brain in vivo. Together, this study provides alternative strategies for CBE development, expands the toolkits of miniCBEs and miniABEs and offers promising therapeutic tools for clinical applications.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Mutación , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Citosina/metabolismo
17.
Nat Neurosci ; 11(7): 741-3, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18516035

RESUMEN

The transient receptor potential canonical (TRPC) channels are Ca2+-permeable, nonselective cation channels with different biological functions, but their roles in brain are largely unknown. Here we report that TRPC6 was localized to excitatory synapses and promoted their formation via a CaMKIV-CREB-dependent pathway. TRPC6 transgenic mice showed enhancement in spine formation, and spatial learning and memory in Morris water maze. These results reveal a previously unknown role of TRPC6 in synaptic and behavioral plasticity.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Canales Catiónicos TRPC/fisiología , Animales , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipocampo/citología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal/métodos , Microscopía Inmunoelectrónica/métodos , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Sprague-Dawley , Sinapsis/ultraestructura , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6 , Transfección/métodos
18.
Nat Neurosci ; 10(5): 559-67, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17396124

RESUMEN

Channels formed by the transient receptor potential (TRP) family of proteins have a variety of physiological functions. Here we report that two members of the TRP cation channel (TRPC) subfamily, TRPC3 and 6, protected cerebellar granule neurons (CGNs) against serum deprivation-induced cell death in cultures and promoted CGN survival in rat brain. In CGN cultures, blocking TRPC channels or downregulating TRPC3 or 6 suppressed brain-derived neurotrophic factor (BDNF)-mediated protection, BDNF-triggered intracellular Ca2+ elevation and BDNF-induced CREB activation. By contrast, overexpressing TRPC3 or 6 increased CREB-dependent reporter gene transcription and prevented apoptosis in the neurons deprived of serum, and this protection was blocked by the dominant negative form of CREB. Furthermore, downregulating TRPC3 or 6 induced CGN apoptosis in neonatal rat cerebellum, and this effect was rescued by overexpressing either TRPC3 or 6. Thus, our findings provide in vitro and in vivo evidence that TRPC channels are important in promoting neuronal survival.


Asunto(s)
Cerebelo/citología , Regulación de la Expresión Génica/fisiología , Neuronas/fisiología , Canales Catiónicos TRPC/fisiología , Animales , Animales Recién Nacidos , Factor Neurotrófico Derivado del Encéfalo/farmacología , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Caspasa 3/metabolismo , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Imidazoles/farmacología , Etiquetado Corte-Fin in Situ/métodos , Técnicas In Vitro , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , ARN Interferente Pequeño/farmacología , Ratas , Transfección/métodos
19.
Neuron ; 109(10): 1636-1656.e8, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33831348

RESUMEN

Ample evidence indicates that individuals with intellectual disability (ID) are at increased risk of developing stress-related behavioral problems and mood disorders, yet a mechanistic explanation for such a link remains largely elusive. Here, we focused on characterizing the syndromic ID gene oligophrenin-1 (OPHN1). We find that Ophn1 deficiency in mice markedly enhances helpless/depressive-like behavior in the face of repeated/uncontrollable stress. Strikingly, Ophn1 deletion exclusively in parvalbumin (PV) interneurons in the prelimbic medial prefrontal cortex (PL-mPFC) is sufficient to induce helplessness. This behavioral phenotype is mediated by a diminished excitatory drive onto Ophn1-deficient PL-mPFC PV interneurons, leading to hyperactivity in this region. Importantly, suppressing neuronal activity or RhoA/Rho-kinase signaling in the PL-mPFC reverses helpless behavior. Our results identify OPHN1 as a critical regulator of adaptive behavioral responses to stress and shed light onto the mechanistic links among OPHN1 genetic deficits, mPFC circuit dysfunction, and abnormalities in stress-related behaviors.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Interneuronas/metabolismo , Corteza Prefrontal/metabolismo , Estrés Psicológico/metabolismo , Animales , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Proteínas Activadoras de GTPasa/deficiencia , Proteínas Activadoras de GTPasa/genética , Células HEK293 , Desamparo Adquirido , Humanos , Interneuronas/fisiología , Ratones , Ratones Endogámicos C57BL , Parvalbúminas/genética , Parvalbúminas/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Estrés Psicológico/fisiopatología , Transmisión Sináptica
20.
Bio Protoc ; 11(5): e3988, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33796622

RESUMEN

Transcardiac perfusion with saline followed by 4% paraformaldehyde (PFA) is widely used to clear blood and preserve brain for immunostaining or in situ hybridization. PFA breaks into formaldehyde in solution, which cross-link protein and DNA molecules to preserve tissue and cell structure. Here we provide a step by step guide for performing this procedure in mouse.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA