Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(8): 1421-1435, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35830857

RESUMEN

PPFIBP1 encodes for the liprin-ß1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications.


Asunto(s)
Epilepsia , Microcefalia , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Acetilcolinesterasa/genética , Animales , Drosophila melanogaster/genética , Epilepsia/genética , Pérdida de Heterocigocidad , Microcefalia/genética , Trastornos del Neurodesarrollo/genética , Linaje
2.
Genet Med ; : 101278, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39315527

RESUMEN

PURPOSE: Biallelic INPP4A variants have recently been associated with severe neurodevelopmental disease in single case reports. Here, we expand and elucidate the clinical-genetic spectrum and provide a pathomechanistic explanation for genotype-phenotype correlations. METHODS: Clinical and genomic investigations of 30 individuals were undertaken alongside molecular and in silico modelling and translation reinitiation studies. RESULTS: We characterize a clinically variable disorder with cardinal features including global developmental delay, severe-profound intellectual disability, microcephaly, limb weakness, cerebellar signs and short stature. A more severe presentation associated with biallelic INPP4A variants downstream of exon 4 has additional features of (ponto)cerebellar hypoplasia, reduced cerebral volume, peripheral spasticity, contractures, intractable seizures and cortical visual impairment. Our studies identify the likely pathomechanism of this genotype-phenotype correlation entailing translational reinitiation in exon 4 resulting in an N-terminal truncated INPP4A protein retaining partial functionality, associated with less severe disease. We also identified identical reinitiation site conservation in Inpp4a-/- mouse models displaying similar genotype-phenotype correlation. Additionally, we show fibroblasts from a single affected individual exhibit disrupted endocytic trafficking pathways, indicating the potential biological basis of the condition. CONCLUSION: Our studies comprehensively characterise INPP4A-related neurodevelopmental disorder and suggest genotype-specific clinical assessment guidelines. We propose the potential mechanistic basis of observed genotype-phenotype correlations entails exon 4 translation reinitiation.

3.
Brain ; 146(12): 5031-5043, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517035

RESUMEN

MED27 is a subunit of the Mediator multiprotein complex, which is involved in transcriptional regulation. Biallelic MED27 variants have recently been suggested to be responsible for an autosomal recessive neurodevelopmental disorder with spasticity, cataracts and cerebellar hypoplasia. We further delineate the clinical phenotype of MED27-related disease by characterizing the clinical and radiological features of 57 affected individuals from 30 unrelated families with biallelic MED27 variants. Using exome sequencing and extensive international genetic data sharing, 39 unpublished affected individuals from 18 independent families with biallelic missense variants in MED27 have been identified (29 females, mean age at last follow-up 17 ± 12.4 years, range 0.1-45). Follow-up and hitherto unreported clinical features were obtained from the published 12 families. Brain MRI scans from 34 cases were reviewed. MED27-related disease manifests as a broad phenotypic continuum ranging from developmental and epileptic-dyskinetic encephalopathy to variable neurodevelopmental disorder with movement abnormalities. It is characterized by mild to profound global developmental delay/intellectual disability (100%), bilateral cataracts (89%), infantile hypotonia (74%), microcephaly (62%), gait ataxia (63%), dystonia (61%), variably combined with epilepsy (50%), limb spasticity (51%), facial dysmorphism (38%) and death before reaching adulthood (16%). Brain MRI revealed cerebellar atrophy (100%), white matter volume loss (76.4%), pontine hypoplasia (47.2%) and basal ganglia atrophy with signal alterations (44.4%). Previously unreported 39 affected individuals had seven homozygous pathogenic missense MED27 variants, five of which were recurrent. An emerging genotype-phenotype correlation was observed. This study provides a comprehensive clinical-radiological description of MED27-related disease, establishes genotype-phenotype and clinical-radiological correlations and suggests a differential diagnosis with syndromes of cerebello-lental neurodegeneration and other subtypes of 'neuro-MEDopathies'.


Asunto(s)
Catarata , Epilepsia Generalizada , Epilepsia , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Femenino , Humanos , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Epilepsia/genética , Cerebelo/patología , Trastornos del Neurodesarrollo/genética , Epilepsia Generalizada/patología , Trastornos del Movimiento/diagnóstico por imagen , Trastornos del Movimiento/genética , Atrofia/patología , Catarata/genética , Catarata/patología , Fenotipo , Complejo Mediador/genética
4.
Brain ; 146(8): 3273-3288, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757831

RESUMEN

In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival.


Asunto(s)
Distonía , Trastornos Distónicos , Malformaciones del Sistema Nervioso , Masculino , Humanos , Estudios Transversales , Mutación/genética , Fenotipo , Distonía/genética , Trastornos Distónicos/genética , Chaperonas Moleculares/genética
5.
Ann Neurol ; 92(2): 304-321, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35471564

RESUMEN

OBJECTIVE: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS: Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS: A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION: The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.


Asunto(s)
Apirasa , Discapacidad Intelectual , Paraplejía Espástica Hereditaria , Sustancia Blanca , Apirasa/genética , Disartria , Humanos , Discapacidad Intelectual/genética , Mutación/genética , Paraplejía/genética , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/genética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
6.
Am J Hum Genet ; 105(6): 1294-1301, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31761294

RESUMEN

The development of hindlimbs in tetrapod species relies specifically on the transcription factor TBX4. In humans, heterozygous loss-of-function TBX4 mutations cause dominant small patella syndrome (SPS) due to haploinsufficiency. Here, we characterize a striking clinical entity in four fetuses with complete posterior amelia with pelvis and pulmonary hypoplasia (PAPPA). Through exome sequencing, we find that PAPPA syndrome is caused by homozygous TBX4 inactivating mutations during embryogenesis in humans. In two consanguineous couples, we uncover distinct germline TBX4 coding mutations, p.Tyr113∗ and p.Tyr127Asn, that segregated with SPS in heterozygous parents and with posterior amelia with pelvis and pulmonary hypoplasia syndrome (PAPPAS) in one available homozygous fetus. A complete absence of TBX4 transcripts in this proband with biallelic p.Tyr113∗ stop-gain mutations revealed nonsense-mediated decay of the endogenous mRNA. CRISPR/Cas9-mediated TBX4 deletion in Xenopus embryos confirmed its restricted role during leg development. We conclude that SPS and PAPPAS are allelic diseases of TBX4 deficiency and that TBX4 is an essential transcription factor for organogenesis of the lungs, pelvis, and hindlimbs in humans.


Asunto(s)
Anomalías Múltiples/etiología , Enfermedades del Desarrollo Óseo/etiología , Ectromelia/etiología , Cadera/anomalías , Homocigoto , Isquion/anomalías , Mutación con Pérdida de Función , Enfermedades Pulmonares/etiología , Pulmón/anomalías , Rótula/anomalías , Pelvis/anomalías , Proteínas de Dominio T Box/genética , Anomalías Múltiples/patología , Adolescente , Enfermedades del Desarrollo Óseo/patología , Niño , Ectromelia/patología , Femenino , Cadera/patología , Humanos , Isquion/patología , Pulmón/patología , Enfermedades Pulmonares/patología , Masculino , Rótula/patología , Linaje , Pelvis/patología , Pronóstico
7.
Genet Med ; 23(4): 787-792, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33288880

RESUMEN

PURPOSE: Variants in genes encoding sarcomeric proteins are the most common cause of inherited cardiomyopathies. However, the underlying genetic cause remains unknown in many cases. We used exome sequencing to reveal the genetic etiology in patients with recessive familial cardiomyopathy. METHODS: Exome sequencing was carried out in three consanguineous families. Functional assessment of the variants was performed. RESULTS: Affected individuals presented with hypertrophic or dilated cardiomyopathy of variable severity from infantile- to early adulthood-onset and sudden cardiac death. We identified a homozygous missense substitution (c.170C>A, p.[Ala57Asp]), a homozygous translation stop codon variant (c.106G>T, p.[Glu36Ter]), and a presumable homozygous essential splice acceptor variant (c.482-1G>A, predicted to result in skipping of exon 5). Morpholino knockdown of the MYL3 orthologue in zebrafish, cmlc1, resulted in compromised cardiac function, which could not be rescued by reintroduction of MYL3 carrying either the nonsense c.106G>T or the missense c.170C>A variants. Minigene assay of the c.482-1G>A variant indicated a splicing defect likely resulting in disruption of the EF-hand Ca2+ binding domains. CONCLUSIONS: Our data demonstrate that homozygous MYL3 loss-of-function variants can cause of recessive cardiomyopathy and occurrence of sudden cardiac death, most likely due to impaired or loss of myosin essential light chain function.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Cadenas Ligeras de Miosina/genética , Animales , Cardiomiopatías/genética , Cardiomiopatía Dilatada/genética , Consanguinidad , Muerte Súbita Cardíaca/etiología , Humanos , Linaje , Pez Cebra/genética
8.
Brain ; 143(5): 1447-1461, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32282878

RESUMEN

Developmental and epileptic encephalopathies are a heterogeneous group of early-onset epilepsy syndromes dramatically impairing neurodevelopment. Modern genomic technologies have revealed a number of monogenic origins and opened the door to therapeutic hopes. Here we describe a new syndromic developmental and epileptic encephalopathy caused by bi-allelic loss-of-function variants in GAD1, as presented by 11 patients from six independent consanguineous families. Seizure onset occurred in the first 2 months of life in all patients. All 10 patients, from whom early disease history was available, presented with seizure onset in the first month of life, mainly consisting of epileptic spasms or myoclonic seizures. Early EEG showed suppression-burst or pattern of burst attenuation or hypsarrhythmia if only recorded in the post-neonatal period. Eight patients had joint contractures and/or pes equinovarus. Seven patients presented a cleft palate and two also had an omphalocele, reproducing the phenotype of the knockout Gad1-/- mouse model. Four patients died before 4 years of age. GAD1 encodes the glutamate decarboxylase enzyme GAD67, a critical actor of the γ-aminobutyric acid (GABA) metabolism as it catalyses the decarboxylation of glutamic acid to form GABA. Our findings evoke a novel syndrome related to GAD67 deficiency, characterized by the unique association of developmental and epileptic encephalopathies, cleft palate, joint contractures and/or omphalocele.


Asunto(s)
Síndromes Epilépticos/genética , Síndromes Epilépticos/patología , Síndromes Epilépticos/fisiopatología , Glutamato Descarboxilasa/genética , Anomalías Múltiples/genética , Femenino , Humanos , Recién Nacido , Masculino , Mutación , Linaje
9.
Proc Natl Acad Sci U S A ; 115(28): E6566-E6575, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29946036

RESUMEN

Myosin is a molecular motor indispensable for body movement and heart contractility. Apart from pure cardiomyopathy, mutations in MYH7 encoding slow/ß-cardiac myosin heavy chain also cause skeletal muscle disease with or without cardiac involvement. Mutations within the α-helical rod domain of MYH7 are mainly associated with Laing distal myopathy. To investigate the mechanisms underlying the pathology of the recurrent causative MYH7 mutation (K1729del), we have developed a Drosophila melanogaster model of Laing distal myopathy by genomic engineering of the Drosophila Mhc locus. Homozygous MhcK1728del animals die during larval/pupal stages, and both homozygous and heterozygous larvae display reduced muscle function. Flies expressing only MhcK1728del in indirect flight and jump muscles, and heterozygous MhcK1728del animals, were flightless, with reduced movement and decreased lifespan. Sarcomeres of MhcK1728del mutant indirect flight muscles and larval body wall muscles were disrupted with clearly disorganized muscle filaments. Homozygous MhcK1728del larvae also demonstrated structural and functional impairments in heart muscle, which were not observed in heterozygous animals, indicating a dose-dependent effect of the mutated allele. The impaired jump and flight ability and the myopathy of indirect flight and leg muscles associated with MhcK1728del were fully suppressed by expression of Abba/Thin, an E3-ligase that is essential for maintaining sarcomere integrity. This model of Laing distal myopathy in Drosophila recapitulates certain morphological phenotypic features seen in Laing distal myopathy patients with the recurrent K1729del mutation. Our observations that Abba/Thin modulates these phenotypes suggest that manipulation of Abba/Thin activity levels may be beneficial in Laing distal myopathy.


Asunto(s)
Miopatías Distales , Proteínas de Drosophila/metabolismo , Sitios Genéticos , Mutación , Miocardio/metabolismo , Cadenas Pesadas de Miosina , Proteínas de Motivos Tripartitos , Animales , Modelos Animales de Enfermedad , Miopatías Distales/genética , Miopatías Distales/metabolismo , Miopatías Distales/patología , Proteínas de Drosophila/genética , Drosophila melanogaster , Homocigoto , Humanos , Miocardio/patología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Proteínas de Motivos Tripartitos/biosíntesis , Proteínas de Motivos Tripartitos/genética
10.
Brain ; 140(11): 2851-2859, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053766

RESUMEN

See Ginevrino and Valente (doi:10.1093/brain/awx260) for a scientific commentary on this article. Autosomal dominant torsion dystonia-1 is a disease with incomplete penetrance most often caused by an in-frame GAG deletion (p.Glu303del) in the endoplasmic reticulum luminal protein torsinA encoded by TOR1A. We report an association of the homozygous dominant disease-causing TOR1A p.Glu303del mutation, and a novel homozygous missense variant (p.Gly318Ser) with a severe arthrogryposis phenotype with developmental delay, strabismus and tremor in three unrelated Iranian families. All parents who were carriers of the TOR1A variant showed no evidence of neurological symptoms or signs, indicating decreased penetrance similar to families with autosomal dominant torsion dystonia-1. The results from cell assays demonstrate that the p.Gly318Ser substitution causes a redistribution of torsinA from the endoplasmic reticulum to the nuclear envelope, similar to the hallmark of the p.Glu303del mutation. Our study highlights that TOR1A mutations should be considered in patients with severe arthrogryposis and further expands the phenotypic spectrum associated with TOR1A mutations.


Asunto(s)
Artrogriposis/genética , Discapacidades del Desarrollo/genética , Variación Genética/genética , Chaperonas Moleculares/genética , Estrabismo/genética , Temblor/genética , Secuencia de Aminoácidos , Artrogriposis/complicaciones , Artrogriposis/diagnóstico por imagen , Preescolar , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/diagnóstico por imagen , Femenino , Células HEK293 , Humanos , Lactante , Masculino , Linaje , Índice de Severidad de la Enfermedad , Estrabismo/complicaciones , Estrabismo/diagnóstico por imagen , Temblor/complicaciones , Temblor/diagnóstico por imagen
12.
Hum Mol Genet ; 24(13): 3638-50, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25801283

RESUMEN

Protein aggregate myopathies (PAMs) define muscle disorders characterized by protein accumulation in muscle fibres. We describe a new PAM in a patient with proximal muscle weakness and hypertrophic cardiomyopathy, whose muscle fibres contained inclusions containing myosin and myosin-associated proteins, and aberrant distribution of microtubules. These lesions appear as intact A- and M-bands lacking thin filaments and Z-discs. These features differ from inclusions in myosin storage myopathy (MSM), but are highly similar to those in mice deficient for the muscle-specific RING finger proteins MuRF1 and MuRF3. Sanger sequencing excluded mutations in the MSM-associated gene MYH7 but identified mutations in TRIM63 and TRIM54, encoding MuRF1 and MuRF3, respectively. No mutations in other potentially disease-causing genes were identified by Sanger and whole exome sequencing. Analysis of seven family members revealed that both mutations segregated in the family but only the homozygous TRIM63 null mutation in combination with the heterozygous TRIM54 mutation found in the proband caused the disease phenotype. Both MuRFs are microtubule-associated proteins localizing to sarcomeric M-bands and Z-discs. They are E3 ubiquitin ligases that play a role in degradation of sarcomeric proteins, stabilization of microtubules and myogenesis. Lack of ubiquitin and the 20S proteasome subunit in the inclusions found in the patient suggested impaired turnover of thick filament proteins. Disruption of microtubules in cultured myotubes was rescued by transient expression of wild-type MuRF1. The unique features of this novel myopathy point to defects in homeostasis of A-band proteins in combination with instability of microtubules as cause of the disease.


Asunto(s)
Proteínas Musculares/genética , Debilidad Muscular/genética , Mutación , Agregación Patológica de Proteínas/genética , Ubiquitina-Proteína Ligasas/genética , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Células Musculares/metabolismo , Proteínas Musculares/metabolismo , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Linaje , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , España , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/metabolismo
13.
BMC Genet ; 17(1): 71, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27245440

RESUMEN

BACKGROUND: In humans, muscle-specific nicotinergic acetylcholine receptor (AChR) is a transmembrane protein with five different subunits, coded by CHRNA1, CHRNB, CHRND and CHRNG/CHRNE. The gamma subunit of AChR encoded by CHRNG is expressed during early foetal development, whereas in the adult, the γ subunit is replaced by a ε subunit. Mutations in the CHRNG encoding the embryonal acetylcholine receptor may cause the non-lethal Escobar variant (EVMPS) and lethal form (LMPS) of multiple pterygium syndrome. The MPS is a condition characterised by prenatal growth failure with pterygium and akinesia leading to muscle weakness and severe congenital contractures, as well as scoliosis. RESULTS: Our whole exome sequencing studies have identified one novel and two previously reported homozygous mutations in CHRNG in three families affected by non-lethal EVMPS. The mutations consist of deletion of two nucleotides, cause a frameshift predicted to result in premature termination of the foetally expressed gamma subunit of the AChR. CONCLUSIONS: Our data suggest that severity of the phenotype varies significantly both within and between families with MPS and that there is no apparent correlation between mutation position and clinical phenotype. Although individuals with CHRNG mutations can survive, there is an increased frequency of abortions and stillbirth in their families. Furthermore, genetic background and environmental modifiers might be of significance for decisiveness of the lethal spectrum, rather than the state of the mutation per se. Detailed clinical examination of our patients further indicates the changing phenotype from infancy to childhood.


Asunto(s)
Anomalías Múltiples/genética , Hipertermia Maligna/genética , Mutación , Linaje , Receptores Nicotínicos/genética , Anomalías Cutáneas/genética , Niño , Preescolar , Exoma/genética , Femenino , Humanos , Lactante , Masculino , Embarazo
15.
BMC Musculoskelet Disord ; 17: 109, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26932181

RESUMEN

BACKGROUND: Lethal multiple pterygium syndrome (LMPS, OMIM 253290), is a fatal disorder associated with anomalies of the skin, muscles and skeleton. It is characterised by prenatal growth failure with pterygium present in multiple areas and akinesia, leading to muscle weakness and severe arthrogryposis. Foetal hydrops with cystic hygroma develops in affected foetuses with LMPS. This study aimed to uncover the aetiology of LMPS in a family with two affected foetuses. METHODS AND RESULTS: Whole exome sequencing studies have identified novel compound heterozygous mutations in RYR1 in two affected foetuses with pterygium, severe arthrogryposis and foetal hydrops with cystic hygroma, characteristic features compatible with LMPS. The result was confirmed by Sanger sequencing and restriction fragment length polymorphism analysis. CONCLUSIONS: RYR1 encodes the skeletal muscle isoform ryanodine receptor 1, an intracellular calcium channel with a central role in muscle contraction. Mutations in RYR1 have been associated with congenital myopathies, which form a continuous spectrum of pathological features including a severe variant with onset in utero with fetal akinesia and arthrogryposis. Here, the results indicate that LMPS can be considered as the extreme end of the RYR1-related neonatal myopathy spectrum. This further supports the concept that LMPS is a severe disorder associated with defects in the process known as excitation-contraction coupling.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Muerte Fetal , Hipertermia Maligna/diagnóstico , Hipertermia Maligna/genética , Mutación/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Anomalías Cutáneas/diagnóstico , Anomalías Cutáneas/genética , Femenino , Feto/patología , Humanos
16.
Ann Clin Transl Neurol ; 11(10): 2745-2755, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39198997

RESUMEN

OBJECTIVE: Biallelic titin truncating variants (TTNtv) have been associated with a wide phenotypic spectrum, ranging from complex prenatal muscle diseases with dysmorphic features to adult-onset limb-girdle muscular dystrophy, with or without cardiac involvement. Given the size and complexity of TTN, reaching an unequivocal molecular diagnosis and precise disease prognosis remains challenging. METHODS: In this case series, 12 unpublished cases and one already published case with biallelic TTNtv were collected from multiple international medical centers between November 2022 and September 2023. TTN mutations were detected through exome or genome sequencing. Information about familial and personal clinical history was collected in a standardized form. RNA-sequencing and analysis of TTN exon usage were performed on an internal sample cohort including postnatal skeletal muscles, fetal skeletal muscles, postnatal heart muscles, and fetal heart muscles. In addition, publicly available RNA-sequencing data was retrieved from ENCODE. RESULTS: We generated new RNA-seq data on TTN exons and identified genotype-phenotype correlations with prognostic implications for each titinopathy patient (whether worsening or improving in prenatal and postnatal life) using percentage spliced in (PSI) data for the involved exons. Interestingly, thanks to exon usage, we were also able to rule out a titinopathy diagnosis in one prenatal case. INTERPRETATION: This study demonstrates that exon usage provides valuable insights for a more exhaustive clinical interpretation of TTNtv; additionally, it may serve as a model for implementing personalized medicine in many other genetic diseases, since most genes undergo alternative splicing.


Asunto(s)
Conectina , Exones , Humanos , Conectina/genética , Exones/genética , Femenino , Masculino , Adulto , Progresión de la Enfermedad , Mutación , Músculo Esquelético/patología , Niño , Adolescente , Preescolar
17.
N Engl J Med ; 362(13): 1203-10, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20357282

RESUMEN

Glycogen, which serves as a major energy reserve in cells, is a large, branched polymer of glucose molecules. We describe a patient who had muscle weakness, associated with the depletion of glycogen in skeletal muscle, and cardiac arrhythmia, associated with the accumulation of abnormal storage material in the heart. The skeletal muscle showed a marked predominance of slow-twitch, oxidative muscle fibers and mitochondrial proliferation. Western blotting showed the presence of unglucosylated glycogenin-1 in the muscle and heart. Sequencing of the glycogenin-1 gene, GYG1, revealed a nonsense mutation in one allele and a missense mutation, Thr83Met, in the other. The missense mutation resulted in inactivation of the autoglucosylation of glycogenin-1 that is necessary for the priming of glycogen synthesis in muscle.


Asunto(s)
Glucosiltransferasas/deficiencia , Glucosiltransferasas/genética , Glucógeno/biosíntesis , Glicoproteínas/deficiencia , Glicoproteínas/genética , Mutación Missense , Adulto , Arritmias Cardíacas/etiología , Codón sin Sentido , ADN Complementario/análisis , Mareo/etiología , Femenino , Humanos , Masculino , Músculo Esquelético/química , Músculo Esquelético/patología , Linaje , ARN Mensajero/análisis , Análisis de Secuencia de ADN
18.
Acta Neuropathol ; 125(1): 3-18, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22918376

RESUMEN

The myosin heavy chain (MyHC) is the molecular motor of muscle and forms the backbone of the sarcomere thick filaments. Different MyHC isoforms are of importance for the physiological properties of different muscle fiber types. Hereditary myosin myopathies have emerged as an important group of diseases with variable clinical and morphological expression depending on the mutated isoform and type and location of the mutation. Dominant mutations in developmental MyHC isoform genes (MYH3 and MYH8) are associated with distal arthrogryposis syndromes. Dominant or recessive mutations affecting the type IIa MyHC (MYH2) are associated with early-onset myopathies with variable muscle weakness and ophthalmoplegia as a consistent finding. Myopathies with scapuloperoneal, distal or limb-girdle muscle weakness including entities, such as myosin storage myopathy and Laing distal myopathy are the result of usually dominant mutations in the gene for slow/ß cardiac MyHC (MYH7). Protein aggregation is part of the features in some of these myopathies. In myosin storage myopathy protein aggregates are formed by accumulation of myosin beneath the sarcolemma and between myofibrils. In vitro studies on the effects of different mutations associated with myosin storage myopathy and Laing distal myopathy indicate altered biochemical and biophysical properties of the light meromyosin, which is essential for thick filament assembly. Protein aggregates in the form of tubulofilamentous inclusions in association with vacuolated muscle fibers are present at late stage of dominant myosin IIa myopathy and sometimes in Laing distal myopathy. These protein aggregates exhibit features indicating defective degradation of misfolded proteins. In addition to protein aggregation and muscle fiber degeneration some of the myosin mutations cause functional impairment of the molecular motor adding to the pathogenesis of myosinopathies.


Asunto(s)
Enfermedades Musculares/patología , Cadenas Pesadas de Miosina/metabolismo , Animales , Predisposición Genética a la Enfermedad , Humanos , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Mutación/genética , Cadenas Pesadas de Miosina/genética
19.
Brain ; 135(Pt 6): 1682-94, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22577218

RESUMEN

Hereditary myopathy with early respiratory failure and extensive myofibrillar lesions has been described in sporadic and familial cases and linked to various chromosomal regions. The mutated gene is unknown in most cases. We studied eight individuals, from three apparently unrelated families, with clinical and pathological features of hereditary myopathy with early respiratory failure. The investigations included clinical examination, muscle histopathology and genetic analysis by whole exome sequencing and single nucleotide polymorphism arrays. All patients had adult onset muscle weakness in the pelvic girdle, neck flexors, respiratory and trunk muscles, and the majority had prominent calf hypertrophy. Examination of pulmonary function showed decreased vital capacity. No signs of cardiac muscle involvement were found. Muscle histopathological features included marked muscle fibre size variation, fibre splitting, numerous internal nuclei and fatty infiltration. Frequent groups of fibres showed eosinophilic inclusions and deposits. At the ultrastructural level, there were extensive myofibrillar lesions with marked Z-disc alterations. Whole exome sequencing in four individuals from one family revealed a missense mutation, g.274375T>C; p.Cys30071Arg, in the titin gene (TTN). The mutation, which changes a highly conserved residue in the myosin binding A-band titin, was demonstrated to segregate with the disease in all three families. High density single nucleotide polymorphism arrays covering the entire genome demonstrated sharing of a 6.99 Mb haplotype, located in chromosome region 2q31 including TTN, indicating common ancestry. Our results demonstrate a novel and the first disease-causing mutation in A-band titin associated with hereditary myopathy with early respiratory failure. The typical histopathological features with prominent myofibrillar lesions and inclusions in muscle and respiratory failure early in the clinical course should be incentives for analysis of TTN mutations.


Asunto(s)
Salud de la Familia , Proteínas Musculares/genética , Enfermedades Musculares/genética , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas Quinasas/genética , Insuficiencia Respiratoria/genética , Actinas/metabolismo , Adulto , Anciano , Conectina , Extremidades/patología , Femenino , Estudios de Asociación Genética , Humanos , Imagen por Resonancia Magnética , Masculino , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Enfermedades Musculares/complicaciones , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Insuficiencia Respiratoria/complicaciones , Suecia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA