RESUMEN
A careful balance between cell death and survival is of key importance when it comes to the maintenance of cellular homeostasis [...].
Asunto(s)
Apoptosis , Autofagia , Muerte Celular , HomeostasisRESUMEN
Pheochromocytoma (PHEO) and paraganglioma (PGL) (together PPGL) are tumors with poor outcomes that arise from neuroendocrine cells in the adrenal gland, and sympathetic and parasympathetic ganglia outside the adrenal gland, respectively. Many follow germline mutations in genes coding for subunits of succinate dehydrogenase (SDH), a tetrameric enzyme in the tricarboxylic acid (TCA) cycle that both converts succinate to fumarate and participates in electron transport. Germline SDH subunit B (SDHB) mutations have a high metastatic potential. Herein, we review the spectrum of model organisms that have contributed hugely to our understanding of SDH dysfunction. In Saccharomyces cerevisiae (yeast), succinate accumulation inhibits alpha-ketoglutarate-dependent dioxygenase enzymes leading to DNA demethylation. In the worm Caenorhabditis elegans, mutated SDH creates developmental abnormalities, metabolic rewiring, an energy deficit and oxygen hypersensitivity (the latter is also found in Drosophila melanogaster). In the zebrafish Danio rerio, sdhb mutants display a shorter lifespan with defective energy metabolism. Recently, SDHB-deficient pheochromocytoma has been cultivated in xenografts and has generated cell lines, which can be traced back to a heterozygous SDHB-deficient rat. We propose that a combination of such models can be efficiently and effectively used in both pathophysiological studies and drug-screening projects in order to find novel strategies in PPGL treatment.
Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Paraganglioma , Feocromocitoma , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/patología , Animales , Drosophila melanogaster/genética , Mutación de Línea Germinal , Humanos , Paraganglioma/genética , Paraganglioma/patología , Feocromocitoma/genética , Feocromocitoma/patología , Ratas , Succinatos , Pez CebraRESUMEN
Endocytosis provides the cellular nutrition and homeostasis of organisms, but pathogens often take advantage of this entry point to infect host cells. This is counteracted by phagocytosis that plays a key role in the protection against invading microbes both during the initial engulfment of pathogens and in the clearance of infected cells. Phagocytic cells balance two vital functions: preventing the accumulation of cell corpses to avoid pathological inflammation and autoimmunity, whilst maintaining host defence. In this review, we compare elements of phagocytosis in mammals and the nematode Caenorhabditis elegans. Initial recognition of infection requires different mechanisms. In mammals, pattern recognition receptors bind pathogens directly, whereas activation of the innate immune response in the nematode rather relies on the detection of cellular damage. In contrast, molecules involved in efferocytosis-the engulfment and elimination of dying cells and cell debris-are highly conserved between the two species. Therefore, C. elegans is a powerful model to research mechanisms of the phagocytic machinery. Finally, we show that both mammalian and worm studies help to understand how the two phagocytic functions are interconnected: emerging data suggest the activation of innate immunity as a consequence of defective apoptotic cell clearance.
Asunto(s)
Apoptosis , Inmunidad Innata/inmunología , Fagocitos/fisiología , Fagocitosis , Animales , Caenorhabditis elegans , Humanos , Transducción de SeñalRESUMEN
Age-associated neurodegenerative diseases are known to have "impaired protein clearance" as one of the key features causing their onset and progression. Hence, homeostasis is the key to maintaining balance throughout the cellular system as an organism ages. Any imbalance in the protein clearance machinery is responsible for accumulation of unwanted proteins, leading to pathological consequences-manifesting in neurodegeneration and associated debilitating outcomes. Multiple processes are involved in regulating this phenomenon; however, failure to regulate the autophagic machinery is a critical process that hampers the protein clearing pathway, leading to neurodegeneration. Another important and widely known component that plays a role in modulating neurodegeneration is a class of proteins called sirtuins. These are class III histone deacetylases (HDACs) that are known to regulate various vital processes such as longevity, genomic stability, transcription and DNA repair. These enzymes are also known to modulate neurodegeneration in an autophagy-dependent manner. Considering its genetic relevance and ease of studying disease-related endpoints in neurodegeneration, the model system Caenorhabditis elegans has been successfully employed in deciphering various functional outcomes related to critical protein molecules, cell death pathways and their association with ageing. This review summarizes the vital role of sirtuins and autophagy in ageing and neurodegeneration, in particular highlighting the knowledge obtained using the C. elegans model system.
Asunto(s)
Envejecimiento , Autofagia , Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Enfermedades Neurodegenerativas/metabolismo , Sirtuinas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Caenorhabditis elegans/metabolismo , HumanosRESUMEN
Phagocytosis of various targets, such as apoptotic cells or opsonized pathogens, by macrophages is coordinated by a complex signaling network initiated by distinct phagocytic receptors. Despite the different initial signaling pathways, each pathway ends up regulating the actin cytoskeletal network, phagosome formation and closure, and phagosome maturation leading to degradation of the engulfed particle. Herein, we describe a new phagocytic function for the nucleoside diphosphate kinase 1 (NDK-1), the nematode counterpart of the first identified metastasis inhibitor NM23-H1 (nonmetastatic clone number 23) nonmetastatic clone number 23 or nonmetastatic isoform 1 (NME1). We reveal by coimmunoprecipitation, Duolink proximity ligation assay, and mass spectrometry that NDK-1/NME1 works in a complex with DYN-1/Dynamin (Caenorhabditis elegans/human homolog proteins), which is essential for engulfment and phagosome maturation. Time-lapse microscopy shows that NDK-1 is expressed on phagosomal surfaces during cell corpse clearance in the same time window as DYN-1. Silencing of NM23-M1 in mouse bone marrow-derived macrophages resulted in decreased phagocytosis of apoptotic thymocytes. In human macrophages, NM23-H1 and Dynamin are corecruited at sites of phagosome formation in F-actin-rich cups. In addition, NM23-H1 was required for efficient phagocytosis. Together, our data demonstrate that NDK-1/NME1 is an evolutionarily conserved element of successful phagocytosis.-Farkas, Z., Petric, M., Liu, X., Herit, F., Rajnavölgyi, É., Szondy, Z., Budai, Z., Orbán, T. I., Sándor, S., Mehta, A., Bajtay, Z., Kovács, T., Jung, S. Y., Afaq Shakir, M., Qin, J., Zhou, Z., Niedergang, F., Boissan, M., Takács-Vellai, K. The nucleoside diphosphate kinase NDK-1/NME1 promotes phagocytosis in concert with DYN-1/dynamin.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Dinaminas/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Fagocitosis/fisiología , Actinas/metabolismo , Animales , Apoptosis/fisiología , Caenorhabditis elegans/metabolismo , Células Cultivadas , Humanos , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Fagosomas/metabolismo , Transducción de Señal/fisiologíaRESUMEN
Abnormal regulation of cell migration and altered rearrangement of the cytoskeleton are fundamental properties of metastatic cells. The first identified metastasis suppressor NM23-H1, which displays nucleoside-diphosphate kinase (NDPK) activity is involved in these processes. NM23-H1 inhibits the migratory and invasive potential of some cancer cells. Correspondingly, numerous invasive cancer cell lines (eg, breast, colon, oral, hepatocellular carcinoma, and melanoma) display low endogenous NM23 levels. In this review, we summarize mechanisms, which are linked to the anti-metastatic activity of NM23. In human cancer cell lines NM23-H1 was shown to regulate cytoskeleton dynamics through inactivation of Rho/Rac-type GTPases. The Drosophila melanogaster NM23 homolog abnormal wing disc (AWD) controls tracheal and border cell migration. The molecular function of AWD is well characterized in both processes as a GTP supplier of Shi/Dynamin whereby AWD regulates the level of chemotactic receptors on the surface of migrating cells through receptor internalization, by its endocytic function. Our group studied the role of the sole group I NDPK, NDK-1 in distal tip cell (DTC) migration in Caenorhabditis elegans. In the absence of NDK-1 the migration of DTCs is incomplete. A half dosage of NDPK as present in ndk-1 (+/-) heterozygotes results in extra turns and overshoots of migrating gonad arms. Conversely, an elevated NDPK level also leads to incomplete gonadal migration owing to a premature stop of DTCs in the third phase of migration, where NDK-1 acts. We propose that NDK-1 exerts a dosage-dependent effect on the migration of DTCs. Our data derived from DTC migration in C. elegans is consistent with data on AWD's function in Drosophila. The combined data suggest that NDPK enzymes control the availability of surface receptors to regulate cell-sensing cues during cell migration. The dosage of NDPKs may be a coupling factor in cell migration by modulating the efficiency of receptor recycling.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Movimiento Celular/genética , Mutación , Nucleósido Difosfato Quinasas NM23/genética , Animales , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/metabolismo , Heterocigoto , Humanos , Nucleósido Difosfato Quinasas NM23/metabolismo , Transducción de Señal/genéticaRESUMEN
BACKGROUND: Glioma is the most common highly aggressive, primary adult brain tumour. Clinical data show that therapeutic approaches cannot reach the expectations in patients, thus gliomas are mainly incurable diseases. Tumour cells can adapt rapidly to alterations during therapeutic treatments related to their metabolic rewiring and profound heterogeneity in tissue environment. Renewed interests aim to develop effective treatments targeting angiogenesis, kinase activity and/or cellular metabolism. mTOR (mammalian target of rapamycin), whose hyper-activation is characteristic for many tumours, promotes metabolic alterations, macromolecule biosynthesis, cellular growth and survival. Unfortunately, mTOR inhibitors with their lower toxicity have not resulted in appreciable survival benefit. Analysing mTOR inhibitor sensitivity, other metabolism targeting treatments and their combinations could help to find potential agents and biomarkers for therapeutic development in glioma patients. METHODS: In vitro proliferation assays, protein expression and metabolite concentration analyses were used to study the effects of mTOR inhibitors, other metabolic treatments and their combinations in glioma cell lines. Furthermore, mTOR activity and cellular metabolism related protein expression patterns were also investigated by immunohistochemistry in human biopsies. Temozolomide and/or rapamycin treatments altered the expressions of enzymes related to lipid synthesis, glycolysis and mitochondrial functions as consequences of metabolic adaptation; therefore, other anti-metabolic drugs (chloroquine, etomoxir, doxycycline) were combined in vitro. RESULTS: Our results suggest that co-targeting metabolic pathways had tumour cell dependent additive/synergistic effects related to mTOR and metabolic protein expression patterns cell line dependently. Drug combinations, especially rapamycin + doxycycline may have promising anti-tumour effect in gliomas. Additionally, our immunohistochemistry results suggest that metabolic and mTOR activity alterations are not related to the recent glioma classification, and these protein expression profiles show individual differences in patients' materials. CONCLUSIONS: Based on these, combinations of different new/old drugs targeting cellular metabolism could be promising to inhibit high adaptation capacity of tumour cells depending on their metabolic shifts. Relating to this, such a development of current therapy needs to find special biomarkers to characterise metabolic heterogeneity of gliomas.
RESUMEN
The group I members of the Nm23 (non-metastatic) gene family encode nucleoside diphosphate kinases (NDPKs) that have been implicated in the regulation of cell migration, proliferation and differentiation. Despite their developmental and medical significance, the molecular functions of these NDPKs remain ill defined. To minimize confounding effects of functional compensation between closely related Nm23 family members, we studied ndk-1, the sole Caenorhabditis elegans ortholog of group I NDPKs, and focused on its role in Ras/mitogen-activated protein kinase (MAPK)-mediated signaling events during development. ndk-1 inactivation leads to a protruding vulva phenotype and affects vulval cell fate specification through the Ras/MAPK cascade. ndk-1 mutant worms show severe reduction of activated, diphosphorylated MAPK in somatic tissues, indicative of compromised Ras/MAPK signaling. A genetic epistasis analysis using the vulval induction system revealed that NDK-1 acts downstream of LIN-45/Raf, but upstream of MPK-1/MAPK, at the level of the kinase suppressors of ras (KSR-1/2). KSR proteins act as scaffolds facilitating Ras signaling events by tethering signaling components, and we suggest that NDK-1 modulates KSR activity through direct physical interaction. Our study reveals that C. elegans NDK-1/Nm23 influences differentiation by enhancing the level of Ras/MAPK signaling. These results might help to better understand how dysregulated Nm23 in humans contributes to tumorigenesis.
Asunto(s)
Caenorhabditis elegans/enzimología , Regulación del Desarrollo de la Expresión Génica , Genes ras , Sistema de Señalización de MAP Quinasas , Nucleósido Difosfato Quinasas NM23/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Desarrollo Embrionario , Activación Enzimática , Epistasis Genética , Femenino , Silenciador del Gen , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Datos de Secuencia Molecular , Nucleósido Difosfato Quinasas NM23/genética , Penetrancia , Mapeo de Interacción de Proteínas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Vulva/enzimología , Vulva/crecimiento & desarrollo , Vulva/patología , Quinasas raf/genética , Quinasas raf/metabolismoRESUMEN
In textbooks of biochemistry, nucleoside diphosphate conversion to a triphosphate by nucleoside diphosphate 'kinases' (NDPKs, also named NME or NM23 proteins) merits a few lines of text. Yet this essential metabolic function, mediated by a multimeric phosphotransferase protein, has effects that lie beyond a simple housekeeping role. NDPKs attracted more attention when NM23-H1 was identified as the first metastasis suppressor gene. In this review, we examine these NDPK enzymes from a developmental perspective because of the tractable phenotypes found in simple animal models that point to common themes. The data suggest that NDPK enzymes control the availability of surface receptors to regulate cell-sensing cues during cell migration. NDPKs regulate different forms of membrane enclosure that engulf dying cells during development. We suggest that NDPK enzymes have been essential for the regulated uptake of objects such as bacteria or micronutrients, and this evolutionarily conserved endocytic function contributes to their activity towards the regulation of metastasis.
Asunto(s)
Crecimiento y Desarrollo , Nucleósido-Difosfato Quinasa/metabolismo , Animales , Modelos Animales , Receptores de Superficie Celular/metabolismo , Receptores Notch/metabolismo , Retina/enzimología , Retina/crecimiento & desarrollo , Retina/metabolismo , Transducción de Señal , Transmisión Sináptica , Alas de Animales/enzimología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismoRESUMEN
Autophagy is a lysosome-mediated self-degradation process of eukaryotic cells that, depending on the cellular milieu, can either promote survival or act as an alternative mechanism of programmed cell death (PCD) in terminally differentiated cells. Despite the important developmental and medical implications of autophagy and the main form of PCD, apoptosis, orchestration of their regulation remains poorly understood. Here, we show in the nematode Caenorhabditis elegans, that various genetic and pharmacological interventions causing embryonic lethality trigger a massive cell death response that has both autophagic and apoptotic features. The two degradation processes are also redundantly required for normal development and viability in this organism. Furthermore, the CES-2-like basic region leucine-zipper (bZip) transcription factor ATF-2, an upstream modulator of the core apoptotic cell death pathway, is able to directly regulate the expression of at least two key autophagy-related genes, bec-1/ATG6 and lgg-1/ATG8. Thus, the two cell death mechanisms share a common method of transcriptional regulation. Together, these results imply that under certain physiological and pathological conditions, autophagy and apoptosis are co-regulated to ensure the proper morphogenesis and survival of the developing organism. The identification of apoptosis and autophagy as compensatory cellular pathways in C. elegans might help us to understand how dysregulated PCD in humans can lead to diverse pathologies, including cancer, neurodegeneration and diabetes.
Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Animales , Apoptosis/genética , Autofagia/genética , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Etiquetado Corte-Fin in Situ , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMEN
BACKGROUND: Temperature affects virtually all cellular processes. A quick increase in temperature challenges the cells to undergo a heat shock response to maintain cellular homeostasis. Heat shock factor-1 (HSF-1) functions as a major player in this response as it activates the transcription of genes coding for molecular chaperones (also called heat shock proteins) that maintain structural integrity of proteins. However, the mechanisms by which HSF-1 adjusts fundamental cellular processes such as growth, proliferation, differentiation and aging to the ambient temperature remain largely unknown. RESULTS: We demonstrate here that in Caenorhabditis elegans HSF-1 represses the expression of daf-7 encoding a TGF-ß (transforming growth factor-beta) ligand, to induce young larvae to enter the dauer stage, a developmentally arrested, non-feeding, highly stress-resistant, long-lived larval form triggered by crowding and starvation. Under favorable conditions, HSF-1 is inhibited by crowding pheromone-sensitive guanylate cyclase/cGMP (cyclic guanosine monophosphate) and systemic nutrient-sensing insulin/IGF-1 (insulin-like growth factor-1) signaling; loss of HSF-1 activity allows DAF-7 to promote reproductive growth. Thus, HSF-1 interconnects the insulin/IGF-1, TGF-ß and cGMP neuroendocrine systems to control development and longevity in response to diverse environmental stimuli. Furthermore, HSF-1 upregulates another TGF-ß pathway-interacting gene, daf-9/cytochrome P450, thereby fine-tuning the decision between normal growth and dauer formation. CONCLUSION: Together, these results provide mechanistic insight into how temperature, nutrient availability and population density coordinately influence development, lifespan, behavior and stress response through HSF-1.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , GMP Cíclico/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Envejecimiento/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Respuesta al Choque Térmico/genética , Insulina/metabolismo , Longevidad/genética , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/genética , Regulación hacia ArribaRESUMEN
In the nematode Caenorhabditis elegans, sex is determined by the ratio of X chromosomes to sets of autosomes: XX animals (2X:2A=1.0) develop as hermaphrodites and XO animals (1X:2A=0.5) develop as males. TRA-1, the worm ortholog of Drosophila Cubitus interruptus and mammalian Gli (Glioma-associated homolog) proteins, is the terminal transcription factor of the C. elegans sex-determination pathway, which specifies hermaphrodite fate by repressing male-specific genes. Here we identify a consensus TRA-1 binding site in the regulatory region of xol-1, the master switch gene controlling sex determination and dosage compensation. xol-1 is normally expressed in males, where it promotes male development and prevents dosage compensation. We show that TRA-1 binds to the consensus site in the xol-1 promoter in vitro and inhibits the expression of xol-1 in XX animals in vivo. Furthermore, inactivation of tra-1 enhances, whereas hyperactivation of tra-1 suppresses, lethality in animals with elevated xol-1 activity. These data imply the existence of a regulatory feedback loop within the C. elegans sex-determination and dosage-compensation cascade that ensures the accurate dose of X-linked genes in cells destined to adopt hermaphrodite fate.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Genes de Helminto , Genes Ligados a X , Factores de Transcripción/genética , Animales , Secuencia de Bases , Sitios de Unión , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Secuencia de Consenso , Secuencia Conservada , Proteínas de Unión al ADN/metabolismo , Compensación de Dosificación (Genética) , Genes de Cambio , Masculino , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Procesos de Determinación del Sexo , Factores de Transcripción/metabolismo , Cromosoma XRESUMEN
Nowadays, extracellular vesicles (EVs) raise a great interest as they are implicated in intercellular communication between cancer and stromal cells. Our aim was to understand how vesicular NME1 and NME2 released by breast cancer cells influence the tumour microenvironment. As a model, we used human invasive breast carcinoma cells overexpressing NME1 or NME2, and first analysed in detail the presence of both isoforms in EV subtypes by capillary Western immunoassay (WES) and immunoelectron microscopy. Data obtained by both methods showed that NME1 was present in medium-sized EVs or microvesicles, whereas NME2 was abundant in both microvesicles and small-sized EVs or exosomes. Next, human skin-derived fibroblasts were treated with NME1 or NME2 containing EVs, and subsequently mRNA expression changes in fibroblasts were examined. RNAseq results showed that the expression of fatty acid and cholesterol metabolism-related genes was decreased significantly in response to NME1 or NME2 containing EV treatment. We found that FASN (fatty acid synthase) and ACSS2 (acyl-coenzyme A synthetase short-chain family member 2), related to fatty acid synthesis and oxidation, were underexpressed in NME1/2-EV-treated fibroblasts. Our data show an emerging link between NME-containing EVs and regulation of tumour metabolism.
RESUMEN
The vulva of the Caenorhabditis elegans hermaphrodite develops from a subset of six vulval precursor cells (VPCs) by the combined effect of the Ras, Wingless and Notch signaling cascades, and of three redundant synMuv (synthetic Multivulva) pathways grouped into classes A, B and C. Here we show that signaling via the GLI- (Glioma-associated protein) like transcription factor TRA-1, which is the terminal regulator of the C. elegans sex determination cascade, is a newly discovered pathway specifying vulval cell fates. We found that TRA-1 accumulates in, and regulates the fusion process of, cells (including the VPCs and hypodermal cells) involved in vulval patterning. TRA-1 also influenced the expression of the Hox gene lin-39, a central regulator of vulval development. Furthermore, inactivation of tra-1, which transforms animals with hermaphrodite-specific karyotype into males, promoted vulval induction in synMuv A, but not in synMuv B, mutant background. This implies that TRA-1 interacts with the class B synMuv genes, many of which are involved in chromatin-mediated transcriptional repression of cell proliferation. These results may help to understand how compromised GLI activity in humans leads to cancer. Together, we suggest that the GLI protein family involved in several key developmental processes in both invertebrates and vertebrates regulates somatic cell fates through influencing, at least in part, the expression of specific Hox genes.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/embriología , Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Proteínas Oncogénicas/fisiología , Factores de Transcripción/fisiología , Vulva/embriología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Masculino , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos , Procesos de Determinación del Sexo , Transducción de Señal , Factores de Transcripción/metabolismoRESUMEN
BACKGROUND: Hox genes play a central role in axial patterning during animal development. They are clustered in the genome and specify cell fate in sequential domains along the anteroposterior (A-P) body axis in a conserved order that is co-linear with their relative genomic position. In the soil worm Caenorhabditis elegans, this striking rule of co-linearity is broken by the anterior Hox gene ceh-13, which is located between the two middle Hox paralogs, lin-39 and mab-5, within the loosely organized nematode Hox cluster. Despite its evolutionary and developmental significance, the functional consequence of this unusual genomic organization remains unresolved. RESULTS: In this study we have investigated the role of ceh-13 in different developmental processes, and found that its expression and function are not restricted to the anterior body part. We show that ceh-13 affects cell migration and fusion as well as tissue patterning in the middle and posterior body regions too. These data reveal novel roles for ceh-13 in developmental processes known to be under the control of middle Hox paralogs. Consistently, enhanced activity of lin-39 and mab-5 can suppress developmental arrest and morphologic malformation in ceh-13 deficient animals. CONCLUSION: Our findings presented here show that, unlike other Hox genes in C. elegans which display region-specific accumulation and function along the A-P axis, the expression and functional domain of the anterior Hox paralog ceh-13 extends beyond the anterior region of the worm. Furthermore, ceh-13 and the middle Hox paralogs share several developmental functions. Together, these results suggest the emergence of the middle-group Hox genes from a ceh-13-like primordial Hox ancestor.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Movimiento Celular , Evolución Molecular , Genes Homeobox , Proteínas de Homeodominio/metabolismo , Animales , Caenorhabditis elegans/citología , Embrión no Mamífero/metabolismoRESUMEN
Cellular homeostasis, which is needed for the cells to survive, requires a well-controlled balance in protein turnover. Both protein synthesis and degradation are influenced by distinct genetic pathways that control aging in divergent eukaryotic species. These conserved mechanisms involve the insulin/IGF-1 (Insulin-like Growth Factor-i), TGF-I (Transforming Growth Factor-beta), JNK (c-Jun terminal kinase), RTK/Ras/MAPK (Receptor Tyrosine Kinase/ Ras/Mitogen-Activated Protein Kinase) and TOR (kinase Target Of Rapamycin) signaling cascades and the mitochondrial respiratory system-each of them promotes protein synthesis; as well as the intracellular protein degradation machineries, including the ubiquitin-proteasome system and lysosome-mediated autophagy. In addition to providing building blocks for generation of new proteins and fuelling the cell with energy under starvation, the protein degradation processes eliminate damaged, nonfunctional proteins, the accumulation of which serves as the primary contributory factor to aging. Interestingly, a complex, intimate regulatory relationship exists between mechanisms promoting protein synthesis and those mediating protein degradation: under certain circumstances the former downregulate the latter. Thus, conditions that favor protein synthesis can enhance the rate at which damaged proteins accumulate. This may explain why genetic interventions and environmental factors (e.g., dietary restriction) that reduce protein synthesis, at least to tolerable levels, extend lifespan and increase resistance to cellular stress in various experimental model organisms of aging. In this chapter, the molecular mechanisms by which protein synthesis-promoting longevity pathways and protein degradation pathways interact with each other are discussed.
Asunto(s)
Regulación de la Expresión Génica , Longevidad/fisiología , Proteínas/metabolismo , Transducción de Señal , Animales , HumanosRESUMEN
Metastasis suppressor genes (MSGs) inhibit different biological processes during metastatic progression without globally influencing development of the primary tumor. The first MSG, NM23 (non-metastatic clone 23, isoform H1) or now called NME1 (stands for non-metastatic) was identified some decades ago. Since then, ten human NM23 paralogs forming two groups have been discovered. Group I NM23 genes encode enzymes with evolutionarily highly conserved nucleoside diphosphate kinase (NDPK) activity. In this review we summarize how results from NDPKs in model organisms converged on human NM23 studies. Next, we examine the role of NM23-H1 and its homologs within the metastatic cascade, e.g. cell migration and invasion, proliferation and apoptosis. NM23-H1 homologs are well known inhibitors of cell migration. Drosophila studies revealed that AWD, the fly counterpart of NM23-H1 is a negative regulator of cell motility by modulating endocytosis of chemotactic receptors on the surface of migrating cells in cooperation with Shibire/Dynamin; this mechanism has been recently confirmed by human studies. NM23-H1 inhibits proliferation of tumor cells by phosphorylating the MAPK scaffold, kinase suppressor of Ras (KSR), resulting in suppression of MAPK signalling. This mechanism was also observed with the C. elegans homolog, NDK-1, albeit with an inverse effect on MAPK activation. Both NM23-H1 and NDK-1 promote apoptotic cell death. In addition, NDK-1, NM23-H1 and their mouse counterpart NM23-M1 were shown to promote phagocytosis in an evolutionarily conserved manner. In summary, inhibition of cell migration and proliferation, alongside actions in apoptosis and phagocytosis are all mechanisms through which NM23-H1 acts against metastatic progression.
Asunto(s)
Nucleósido Difosfato Quinasas NM23/metabolismo , Metástasis de la Neoplasia/patología , Animales , Apoptosis , Movimiento Celular , Proliferación Celular , Humanos , Nucleósido Difosfato Quinasas NM23/genética , Invasividad Neoplásica , Metástasis de la Neoplasia/genética , Nucleósido-Difosfato Quinasa/genética , Nucleósido-Difosfato Quinasa/metabolismo , FagocitosisRESUMEN
The conserved B-subunit of succinate dehydrogenase (SDH) participates in the tricarboxylic acid cycle (TCA) cycle and mitochondrial electron transport. The Arg230His mutation in SDHB causes heritable pheochromocytoma/paraganglioma (PPGL). In Caenorhabditiselegans, we generated an in vivo PPGL model (SDHB-1 Arg244His; equivalent to human Arg230His), which manifests delayed development, shortened lifespan, attenuated ATP production and reduced mitochondrial number. Although succinate is elevated in both missense and null sdhb-1(gk165) mutants, transcriptomic comparison suggests very different causal mechanisms that are supported by metabolic analysis, whereby only Arg244His (not null) worms demonstrate elevated lactate/pyruvate levels, pointing to a missense-induced, Warburg-like aberrant glycolysis. In silico predictions of the SDHA-B dimer structure demonstrate that Arg230His modifies the catalytic cleft despite the latter's remoteness from the mutation site. We hypothesize that the Arg230His SDHB mutation rewires metabolism, reminiscent of metabolic reprogramming in cancer. Our tractable model provides a novel tool to investigate the metastatic propensity of this familial cancer and our approach could illuminate wider SDH pathology.This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Hierro-Azufre/genética , Proteínas Mitocondriales/genética , Mutación/genética , Paraganglioma/genética , Succinato Deshidrogenasa/genética , Adenosina Trifosfato/biosíntesis , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/química , Ciclo del Ácido Cítrico/genética , Secuencia Conservada , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Glucólisis/genética , Humanos , Proteínas Hierro-Azufre/química , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Fenotipo , Subunidades de Proteína/genética , Interferencia de ARN , Succinato Deshidrogenasa/químicaRESUMEN
Programmed cell death (PCD) is an essential and highly orchestrated process that plays a major role in morphogenesis and tissue homeostasis during development. In humans, defects in regulation or execution of cell death lead to diabetes, neurodegenerative disorders, and cancer. Two major types of PCD have been distinguished: the caspase-mediated process of apoptosis and the caspase-independent process involving autophagy. Although apoptosis and autophagy are often activated together in response to stress, the molecular mechanisms underlying their interplay remain unclear. Here we show that BEC-1, the C. elegans ortholog of the yeast and mammalian autophagy proteins Atg6/Vps30 and Beclin 1, is essential for development. We demonstrate that BEC-1 is necessary for the function of the class III PI3 kinase LET-512/Vps34, an essential protein required for autophagy, membrane trafficking, and endocytosis. Furthermore, BEC-1 forms a complex with the antiapoptotic protein CED-9/Bcl-2, and its depletion triggers CED-3/Caspase-dependent PCD. Based on our results, we propose that bec-1 represents a link between autophagy and apoptosis, thus supporting the view that the two processes act in concerted manner in the cell death machinery.
Asunto(s)
Apoptosis/genética , Autofagia/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Silenciador del Gen , Animales , Western Blotting , Inmunoprecipitación , Fosfatidilinositol 3-Quinasas/metabolismo , Interferencia de ARN , Proteínas de Transporte Vesicular , Proteína Letal Asociada a bcl/metabolismoRESUMEN
A fascinating aspect of sexual dimorphism in various animal species is that the two sexes differ substantially in lifespan. In humans, for example, women's life expectancy exceeds that of men by 3-7 years. Whether this trait can be attributed to dissimilar lifestyles or genetic (regulatory) factors remains to be elucidated. Herein, we demonstrate that in the nematode Caenorhabditis elegans, the significantly longer lifespan of hermaphrodites-which are essentially females capable of sperm production-over males is established by TRA-1, the terminal effector of the sex-determination pathway. This transcription factor directly controls the expression of daf-16/FOXO, which functions as a major target of insulin/IGF-1 signaling (IIS) and key modulator of aging across diverse animal phyla. TRA-1 extends hermaphrodite lifespan through promoting daf-16 activity. Furthermore, TRA-1 also influences reproductive growth in a DAF-16-dependent manner. Thus, the sex-determination machinery is an important regulator of IIS in this organism. These findings provide a mechanistic insight into how longevity and development are specified unequally in the two genders. As TRA-1 is orthologous to mammalian GLI (glioma-associated) proteins, a similar sex-specific mechanism may also operate in humans to determine lifespan.